How to solve a structure?

- Guess, then refine
- Will always give something, but if the guess is wrong GIGO
- Use Patterson function
- Difficult for complicated structures (in a moment)
- Get an image
- STM is hard to interpret
- HREM, can be ambiguous
- Use DFT
- If the original guess is wrong, GIGO
- Functionals can be inaccurate for TMO's
- Try something else?

Patterson Function I (FT of Diffraction Pattern)

$$
\begin{aligned}
& P(u v w)=\frac{1}{V} \sum_{h k l} I(h k l) e^{-2 \pi i(h u+l v+k w)} \\
& P(\vec{u})=\int \rho(\vec{r}) \rho(\vec{r}+\vec{u}) d^{3} \vec{r}
\end{aligned}
$$

Patterson Function II

Solids normally contain well-separated atoms, and majority of scattering is near the core -- peaked

Patterson map will contain points corresponding to vectors between atoms in the real cell

Patterson Function III

Real Cell

1) Patterson is symmetric about origin (centrosymmetry)
2) Can see pattern of real cell in Patterson cell repeated N times
3) Contains $N(N-1)$ peaks (not counting origin) \rightarrow gets complicated!

Basics

■ We know the amplitudes
$■$ We want to find the phases
■ Problem is insolvable without additional information - constraints
■ Use an iterative approach

Diffraction Phase Problem

An equal opportunity problem - true for x-ray and electron diffraction

Phase: Apples \& Oranges

Phase of Apple + Amplitude of Orange = ?

Phase of Apple = Apple

$\mathrm{FT}^{-1}\left\{\mathrm{~A}_{0} \underline{\exp \left(-\mathrm{i} \phi_{\mathrm{a}}\right)}\right\} \mathrm{m} \longrightarrow$ Apple
Phase is more important than amplitude

The importance of phase information

Correct Modulus

Suzy

Correct Phase Random Modulus

Role of error in phases (degrees)

We would like to find the phases exactly, but we don't have to

Phase and Modulus Errors

We only need approximately correct phases We can tolerate modulus errors

Demonstration: how resolution works in reciprocal space: If we can add beams at large distance from center of patterns with the correct phase, we can reconstruct the structure with very high definition:

Example: simple test structure of repeated molecule

Computed diffraction pattern of structure at left.

Low Resolution ...

Higher resolution ...

Higher resolution ...

Higher resolution ...

Higher resolution ...

This is the goal of direct methods. Given measurement of amplitudes, obtain phases using educated guesswork. As illustrated, good phases give accurate representation of structure.

Direct Methods vs.

 Indirect MethodsIndirect Methods:
"Trial and Error"

\square
Direct Methods:
Using available information to find solutions

Implementation

Infinite Number of Possible Arrangements of Atoms

Direct Methods

Finite

R, χ^{2}, structure,
DFT and chemistry

Caveat: Not Physics

This is probability, not an exact "answer"

All one can say is that the "correct" answer will be among those that are found

What do D.M. give us

■ With the moon in the right quarter -- real space potential/charge density
■ In other cases:

- Atom positions may be wrong (0.1-0.2 \AA)
- Peak Heights may be wrong
- Too many (or too few) atoms visible

■ But... this is often (not always) enough to complete the structure

Chris Gimore

Additional Information Available

■ Physical nature of experiment

- Limited beam or object size
- Physical nature of scattering
- Atomic scattering
- Statistics \& Probability
- Minimum Information/Bias = Maximum Entropy

Symmetry

- Has to be determined a-priori
- CBED
- HREM (maybe)
- Spot Pattern (can be tricky)

First Step: Origin Definition

- Not all phases are unknown
- Translating the crystal has no physical significance
- Can therefore fix an origin for the crystal equivalent to fixing certain reflections
- Relevant for crystallographic phase (not absolute phase of wavefunction which is not important)

Origin Definition c2mm

Origin Definition c2mm

Origin Definition c2mm

Next Steps: Basic Ideas

- There are certain relationships which range from exact to probably correct.
- Simple case, Unitary Sayre Equation, 1 type

$$
F(k)=\sum_{l} f(k) \exp \left(2 \pi i k . r_{l}\right)
$$

- Divide by N, \#atoms \& f(k), atomic scattering factors

$$
\begin{aligned}
& U(k)=1 / N \sum_{l} \exp \left(2 \pi i k . r_{l}\right) ; u(r)=1 / N \sum_{l} \delta\left(r-r_{1}\right) \\
& u(r)=N u(r)^{2}
\end{aligned}
$$

Real/Reciprocal Space

$$
\mathrm{U}(\mathrm{~h}) \approx \sum_{\mathrm{k}} \mathrm{U}(\mathrm{k}) \mathrm{U}(\mathrm{~h}-\mathrm{k})
$$

$$
\mathrm{U}(\mathrm{r}) \approx \mathrm{U}(\mathrm{r})^{2}
$$

Reinforces strong (atom-like) features

Cochran Distribution $\left(\Sigma_{2}\right)$: I

 N) $\sum_{m} \exp \left(2 \pi i k \cdot r_{m}\right)$- Definition: $U(k)=(1 / N) \sum_{m} \exp \left(2 \pi i k \cdot r_{m}\right)$
- Consider the product $N U(k-h) U(h)=(1 / N) \sum_{m} \exp \left(2 \pi i k . r_{m}\right) \sum_{l} \exp \left(2 \pi i h .\left(r_{m}-r_{l}\right)\right)$
- If the atoms are randomly distributed,

$$
\left\langle\sum_{l^{1}} \exp \left(2 \pi i h .\left(r_{m}-r_{l}\right)\right)\right\rangle=1
$$

(exponential terms average to zero if $m \neq l$)

$$
N\langle U(k-h) U(h)\rangle=(1 / N) \sum_{m} \exp \left(2 \pi i k \cdot r_{m}\right)=U(k)
$$

Cochran Distribution: II

$$
\begin{aligned}
& \text { ■ Consider next } \\
& |N U(k-h) U(h)-U(k)|^{2} \\
& =|U(k)|^{2}+N^{2}|U(k-h) U(h)|^{2} \\
& -2 N|U(k) U(k h) U(h)| \cos (\phi(k)-\phi(k-h)-\phi(h))
\end{aligned}
$$ $\square \square \square \square \square \square \square \square \square \square$

Known
Average must be $2 \mathrm{n} \pi$

Cochran Distribution: III

■ We have a distribution of values. The Central Limit theorem: all distributions tend towards Gaussian. Hence a probability:

- $\mathrm{P}(\mathrm{U}(\mathbf{k})-\mathrm{NU}(\mathbf{k}-\mathbf{h}) \mathrm{U}(\mathbf{h}))$
$\sim \operatorname{Cexp}\left(-|\mathrm{U}(\mathbf{k})-\mathrm{NU}(\mathbf{k}-\mathbf{h}) \mathrm{U}(\mathbf{h})|^{2}\right)$
$\sim \operatorname{Cexp}(2|\mathrm{U}(\mathbf{k}) \mathrm{U}(\mathbf{k}-\mathbf{h}) \mathrm{U}(\mathbf{h})| \cos [\phi(\mathbf{k})-\phi(\mathbf{k}-\mathbf{h})-\phi(\mathbf{h})])$
■ Compare to $\exp \left(-x^{2} / 2 \sigma^{2}\right)$
$-\sigma^{2}=1 / 4|\mathrm{U}(\mathbf{k}) \mathrm{U}(\mathbf{k}-\mathbf{h}) \mathrm{U}(\mathbf{h})|$

Form of Distribution

Note: this is more statistics than the presence of atoms

Σ_{2} Triplet

O = known structure amplitude and phase

- = known structure amplitude and unknown phase

Example: $\operatorname{Si}(111) \sqrt{ } 3 x \sqrt{ } 3 \mathrm{Au}$

Only one strong reflection

$$
\begin{array}{ll}
\text { - } & 3 \phi \sim 360 \text { n degrees } \\
\text { - } & \phi=0,120 \text { or } 240 \\
\text { - } & \phi=0 \text { has only } 1 \text { atom } \\
120 \text { or } 240 \text { have } 3
\end{array}
$$

Inequalities

$\left|\Sigma \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}\right|^{2}<\Sigma\left|\mathrm{a}_{\mathrm{i}}\right|^{2} \Sigma\left|\mathrm{~b}_{\mathrm{i}}\right|^{2}$ (Triangle Inequality) $\mathrm{a}_{\mathrm{i}}=1 / \operatorname{sqrt}(\mathrm{N}) \cos \left(2 \pi \mathrm{kr}_{\mathrm{i}}\right) ; \mathrm{b}_{\mathrm{i}}=1 / \mathrm{sqrt}(\mathrm{N})$
$\Sigma \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}=\mathrm{U}(\mathrm{k})$
$\Sigma\left|\mathrm{b}_{\mathrm{i}}\right|^{2}=\Sigma 1 / \mathrm{N}=1$ for N atoms
$\Sigma\left|\mathrm{a}_{\mathrm{i}}\right|^{2}=1 / \mathrm{N} \Sigma \cos \left(2 \pi \mathrm{kr}_{\mathrm{i}}\right)^{2}$
$=1 / 2 \mathrm{~N} \Sigma\left(1+\cos \left(2 \pi[2 \mathrm{k}] \mathrm{r}_{\mathrm{i}}\right)\right)$
$=1 / 2+U(2 k)$
Hence $\mathrm{U}^{2}(\mathrm{k})<1 / 2+\mathrm{U}(2 \mathrm{k}) / 2$
If $U(k)$ is large - can set $U(2 k)$

Quartets

■ Phase relationships involving 4 terms for weak reflections

- Positive and Negative
- Very useful for x-ray diffraction
- Rarely useful with TEM; dynamical effects can make weak reflections stronger than they should be

More subtle statistics

■ Better statistics (Information Theory)

- Entropy of a distribution is more fundamental (as is Kullback-Liebler or relative entropy)
■ Most probable distribution maximizes entropy

$$
S=-\int u(r) \ln u(r) d r
$$

Last step - Refinement

■ Fit atom positions via:

$$
\begin{aligned}
& -\mathrm{R}_{\mathrm{n}}=\Sigma\left|\mathrm{I}_{\text {calc }}-\mathrm{I}_{\text {expt }}\right| \mathrm{n} / \Sigma \mathrm{I}_{\text {expt }}{ }^{\mathrm{n}}\left(\text { or } \mathrm{F}_{\text {calc }}, \mathrm{F}_{\text {expt }}\right) \\
& -\chi^{\mathrm{n}}=\Sigma\left|\mathrm{I}_{\text {calc }}-\mathrm{I}_{\text {expt }}\right|^{\mathrm{n}} / \sigma^{\mathrm{n}} \\
& -\mathrm{n}=1 \text { for Robust Estimation }
\end{aligned}
$$

■ Should use dynamical $\mathrm{I}_{\text {calc }}$ for electrons

- $\mathrm{R}_{1}<0.01$ for most x -ray structures, <0.1 currently for TED.
- $\mathrm{R}_{1} \sim 0.5$ for random variables

Crystallographic Direct Methods

 Structure Triangle

Implementation

1. Chose phases to define origin
2. Guess phases for some reflections
3. Generate from these phases for others and improved phases for initial set
4. Test consistency of predicted amplitudes and phases
5. Iterate, so long as consistency is improving

Note: permuting phases has lower dimensions than permuting atom positions

General Formalism as dual

1. Initial $\rho(\mathrm{r})$
2. Project onto "Real Space Constraint" $\rho^{2}(\mathrm{r})$
3. FFT
4. Project amplitudes onto Observed
5. FFT

In Reciprocal Space: Tangent Formula

- If $\mathrm{U}(\mathrm{r})=\mathrm{U}(\mathrm{r})^{2}=\mathrm{U}^{\prime}(\mathrm{r})$
- Important part is the phase
- $\mathrm{U}(\mathrm{u})=|\mathrm{U}(\mathrm{u})| \exp (\mathrm{i} \theta)$; we know |U(u)| but not θ
- $\exp (\mathrm{i} \theta)=\exp \left(\mathrm{i} \theta^{\prime}\right) ; \operatorname{Tan}(\theta)=\operatorname{Tan}\left(\theta^{\prime}\right)$
- Replace old θ by new one

Algorithm Overview (Gerschberg-Saxton)

More: 1970’s Mathematics

■ C -- Some constraints (e.g. atomicity, probabilities of triplets)
■ F -- Some function (e.g. a FOM)

- Minimize, e.g. Lagrangian

$$
\mathrm{I}=\mathrm{F}+\lambda \mathrm{C}
$$

1990’s Mathematics

■ We have constraints (e.g. atomicity, amplitudes)

- Treat as sets

■ We are looking for the solution as intersection of several constraint sets

Acta Cryst A55, 601 (1999)

The \$64,000 question

- A set is convex if any point between two members is also a member
- If all the sets are convex, problem has one solution
- If they are not, there may be more than one local minimum
- Amplitude measurements do not form a convex set
- But...there still may only be one solution.
- Unsolved mathematical problem

Multiple non-convex constraints

Consider the two sets "N" and "U"

Overall Convex
Overall Non-Convex

Crystallographic methodology T $\square \square \square \square \square \square \square ॥ ॥$

Overall Unique

Overall Non-Convex

Addition of additional convex constraints tends to give a unique solution

Structure Completion: add additional constraints as the phases become known

Orthogonal Projections

Successive Projections

- Iterate between projections
- Other variants possible (see Combettes, Advances in Imaging and Electron Physics 95, 155-270, 1996)

Over-relaxed Projections

- Iterate between projections
- Overshoot (deliberately)
- Converges faster
- Sometimes better solutions

Classic Direct Methods

■ Consider as an iteration

$$
\mathrm{U}_{\mathrm{n}}(\mathrm{k}) \rightarrow \mathrm{u}_{\mathrm{n}}(\mathrm{r})
$$

Constraint

$$
\stackrel{\uparrow}{\mathrm{U}^{\prime}(\mathrm{k})} \leftarrow \mathrm{u}_{\mathrm{n}}^{2}(\mathrm{k}) \quad \text { Constraint }
$$

■ Note the similarities

- Tangent Formula \equiv Orthogonal Projection
- Real space operator, effectively an eigenfunction (fixed point) method

Multiply-Connected Feasible Set $\left\{\mathrm{S}_{1}:|\exists\{\mathrm{x}\}|=\left|\mathrm{X}_{\mathrm{e}}\right|\right\}$

Probability
Contours

Three shaded regions common to both sets, 3 unique solutions

Set with some probability

Types of Constraints

■ Convex - highly convergent

- Multiple convex constraints are unique

■ Non-convex - weakly convergent

- Multiple non-convex constraints may not be unique

More Constraints

Convex
Non-Convex

Positivity (weak)	Presence of Atoms
Atoms at given positions	Bond Lengths
Least bias (MaxEnt)	Interference $\mathrm{A}(\mathrm{k})=\mid \mathrm{B}(\mathrm{k})+$ Known $\left.(\mathrm{k})\right\|^{2}$ Intensities \& errors $\equiv \chi^{2}$ Antatistics (e.g. Σ_{2}) Aond angles Support for gradient Symmetry

Atomistic Constraints

Bonding -
another atom

Bumping
$\rho(r)=0$

Example I: Difference Map

- We know all the moduli, $|\mathrm{F}(\mathrm{k})|$
- We know part of the structure,

$$
\mathrm{F}_{\mathrm{a}}(\mathrm{k})=\left|\mathrm{F}_{\mathrm{a}}(\mathrm{k})\right| \exp \left(\mathrm{i} \phi_{\mathrm{a}}(\mathrm{k})\right)
$$

- Project onto known moduli
$\mathrm{D}(\mathrm{k})=\exp \left(\mathrm{i} \phi_{\mathrm{a}}(\mathrm{k})\right)\left\{\left|\mathrm{F}(\mathrm{k})_{\text {obs }}\right|-\left|\mathrm{F}_{\mathrm{a}}(\mathrm{k})\right|\right\}$
Conventional Fourier Difference Map
- Other methods (SIM wts) equivalent to further projections.

Operators as projections

- Some operator O, apply to some current estimate (x in real space, X in reciprocal space)
- Define a set for the cases where

$$
<\mathrm{O}(\mathrm{x})-\mathrm{x}><\text { some number }
$$

- New estimate obtained by the iteration

$$
\mathrm{x}_{\mathrm{n}+1}=\mathrm{O}\left(\mathrm{x}_{\mathrm{n}}\right)
$$

- N.B., there are some important formal mathematical issues.....

Example II: Sayre Equation

■ Use $\mathrm{O}(\mathrm{x}) \equiv \alpha \mathrm{x}^{2} ; \alpha=$ scaling term
■ Couple with known moduli as second set

- Iteration

$$
\begin{aligned}
& -\mathrm{X}_{\mathrm{n}+1}=\mathrm{O}\left(\mathrm{x}_{\mathrm{n}}\right)=\alpha \mathrm{X}_{\mathrm{n}}^{2} \\
& -\left|\mathrm{X}_{\mathrm{n}+1}\right|=\left|\mathrm{X}_{\text {observed }}\right|
\end{aligned}
$$

$■$ This is the Sayre equation (and tangent formula)

Example III: Structure Completion

- Explanation (pseudo-mathematical) of why structure completion strategies can solve, uniquely, problems when the initial maps are not so good

Structure Completion

Consider the two non-convex sets " N " and " U "

- Add a third set "O"
- Addition of additional constraints tends to give a unique solution
- Structure Completion: add additional constraints as the atoms become known
Overall Convex

IV Convex Set for unmeasured

 |U(h,k,l)|- Phase of $\mathrm{U}(\mathrm{h}, \mathrm{k}, \mathrm{l})$ can be estimated from other reflections
- Set of $\mathrm{U}(\mathrm{h}, \mathrm{k}, \mathrm{l})$ with a given phase is convex
- Hence |U(h,k,l)| is well specified and can be (approximately) recovered
- Remember, phase is more important than amplitude

Support Constraint

■ Displacements decay as $(\alpha+z) \exp (-q z)$ into bulk ${ }^{1}$

- Real space constraint

$$
-\rho(\mathrm{z})=\rho(\mathrm{z}) \mathrm{w}(\mathrm{z}) \quad \mathrm{w}(\mathrm{z})=1,-\mathrm{L}<\mathrm{z}<\mathrm{L}
$$

$=0$, otherwise

- Convex constraint
- Has well documented properties

PRB 60, 2771 (1999)
${ }^{1}$ Biharmonic expansion of strain field, SS 294, 324 (1993)

Unmeasured Reflections

Recovery of Unmeasured Reflections

Restoration and Extension
 \square
 \square

Example V: Diffractive Imaging

True diffraction pattern for small particle model (Non-Convex Constraint)

Convex Support
Constraint

Example V: Diffractive imaging

- Constraint: part of real-space x is zero
- Convex constraint
- Iteration
$-\mathrm{x}=0$, part of map
$-|\mathrm{X}|=\left|\mathrm{X}_{\text {observed }}\right|$

Example V: Diffractive Imaging

True diffraction pattern for small particle model (Non-Convex Constraint)

Convex Support
Constraint

Example V: Diffractive imaging

- Constraint: part of real-space x is zero
- Convex constraint
- Iteration
$-\mathrm{x}=0$, part of map
$-|\mathrm{X}|=\left|\mathrm{X}_{\text {observed }}\right|$

The Algorithm

 Millane and Stroud, 1997).

Convergence and the Missing Central Beam

$$
R=\frac{\sum\left|F^{E x p}\right|-\mid F^{\mathrm{R}} \|}{\sum\left|F^{\mathrm{Ex}}\right|} 100 \%
$$

- Missing central beam from IP saturation
- Use low mag. TEM image
- Reconstruction start with the whole pattern
- Finish with as recorded diffraction pattern

Phase Recovery for a Small Particle

True real space exit wave for small particle model

Reconstructed exit wave after 3000 iterations

Electron Nanoprobe formation

Back Focal Plane
$10 \mu \mathrm{~m}$ aperture -> 50 nm beam $\mathrm{M}=1 / 200$

Coherent X-ray Diffraction

Differential Cross Section
$\square \frac{d \sigma}{d \Omega}=\operatorname{Pr}_{e}^{2}|F(\boldsymbol{K})|^{2}$
Structure Factor

$$
F(\boldsymbol{K})=\int \rho(\boldsymbol{r}) e^{i \boldsymbol{K} \cdot \boldsymbol{r}} d \boldsymbol{r}
$$

$\rho(r)$: Electron Density Distribution

Coherent Diffraction Pattern

BL29XUL, SPring-8
Unstained Human Chromosome
Y. Nishino, Y. Takahashi, N. Imamoto, T. Ishikawa, and K. Maeshima, submitted (2008).

From 2D to 3D

Coherent diffraction measurement at 38 incident angles
from -70° to 70° at 2.5° intervals at the minimum

- normalize the diffraction data by using
the total number of electrons in the 2 D reconstruction
- use interpolation to obtain diffraction intensity in each voxel
- image reconstruction using 3D Fourier transformation

J. Miao, T. Ishikawa, B. Johnson, E.H. Anderson,
B. Lai \& K.O. Hodgson, PRL 89, 088303 (2002)

Reconstructed Si structure

- Intensity ratio of 200 and the direct spots \rightarrow thickness : 4~8

amplitude

nm

- Dumbbell structure with the separation of 0.136 nm is resolved clearly
\rightarrow We succeeded in reconstructing dumbbell structure in silicon phase
- Lattice fringes can be seen, but dumbbell structure is not reconstructed

Nano structures can be reconstructed with atomic resolution by electron diffractive imaging using SAND

