

Precession Diffraction: The Philospher's Stone of Electron Crystallography?

Many methods exist for obtaining diffraction information

Focus

- Selected Area
- □ Nanodiffraction and variants

- All are complicated to interpret
- Reciprocal space is right, but intensities depend upon thickness, tilt etc

We would like a method where not just the positions of the spots, but also the intensities could be used.

What PED can do

- Not rigorously equivalent to simple kinematical diffraction, but has many similarities
 - □ If the structure factor is large \rightarrow Intensity is large
 - Useful for fingerprinting structures
 - Often does not need calculations to interpret

History – Electron Precession (1993)

Double conical beam-rocking system for measurement of integrated electron diffraction intensities

R. Vincent, P.A. Midgley

H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK (Received 26 July 1993; in final form 4 October 1993)

Advantages:

- 1. PRECESSION -> MANY MORE REFLECTIONS INTERCEPTED BY EWALD SPHERE -> LARGE DATA SET
- 2. DIFFRACTED INTENSITIES DETERMINED BY INTEGRATING THROUGH BRAGG CONDITION → NO BRANCH STRUCTURE ... Ig → |Ug|² (NOT PARTIAL S.F.)
- 3. REDUCES NON-SYSTEMATIC DYNAMICAL EFFECTS

4. FOCUSSED PROBE -> HIGH SPATIAL RESOLUTION (~0-1, m)

Precession System

US patent application:

"A hollow-cone electron diffraction system". Application serial number 60/531,641, Dec 2004.

SPINNING STAR: UNIVERSAL INTERFASE FOR PRECESSION ELECTRON DIFFRACTION FOR ANY TEM (120-200-300 KV)

• Can be easily retrofitable to any TEM 100- 300 KV

- precession is possible for any beam size 300 50 nm
- Precession is possible for a parallel or convergent beam

 precession eliminates false spots to ED pattern that belong to dynamical contributions

• precession angle can vary continuously (0°-3°) to observe true crystallographic symmetry variation

• Software ELD for easy quantification of ED intensities and automatic symmetry (point, space group) research

 Easily interfaced to electron diffractometer for automatic 3D structure determination

NanoMEGAS Advanced Tools for electron diffraction

Examples:

- Complicated Structures
 Hard to interpret SAED
 Simple to interpret PED
- EDS
 - Elemental ratio's depend upon orientation in standard mode
 - □ Weak to no dependence with PED

APPLICATION : FIND TRUE CRYSTAL SYMMETRY

NanoMEGAS Advanced Tools for electron diffraction

ダ

Courtesy M.Gemmi Univ of Milano

APPLICATION : PERFECT CRYSTAL ORIENTATION

Crystals –specially minerals -usually grow in platelet or fiber shape and results dificult to orient perfectly in a particular zone axis; in this example olivine crystals are perfectly oriented after precession is on.

Carbide

EDS, on zone (SrTiO₃)

Practical Use

- Two commercial systems (one hardware, another software) are available
- Not complicated, and could probably be written in scripting language
- Alignment can be tricky it always is
- Not rocket science to use

Some Practical Issues

Projector Spiral Distortions (60 mRad tilt)

Bi-polar push-pull circuit (H9000)

C7

Optics

Optics

One Consequence

- Prefield/Postfield displacements of beam $d^{Pre} = 1/(2\pi) \nabla \chi^{Pre}(s-t^{Pre});$ s = Scan $d^{Post}=1/(2\pi) \nabla \chi^{Post}(s-t^{Post}) - s^{D}\theta$ $s^{D} = DeScan$ $\nabla \chi(u)/(2\pi) = \Delta z \theta + C_{s} \theta^{3}$ Total apparent displacement is the sum
 - $d^{\text{Nett}} = d^{\text{Pre}} + d^{\text{Post}}$
 - $= \Delta z^{\text{Pre}}(\theta \theta^{\text{Pre}}) + \Delta z^{\text{Post}}(\theta \theta^{\text{Post}})$ $+ C_s^{\text{Pre}}(\theta - \theta^{\text{Pre}})^3 + C_s^{\text{Post}}(\theta - \theta^{\text{Post}})^3$ $-s^{\text{D}}\theta$

Probe and Displacements (nm)

Prefield misalignment 1 mRad; Postfield -1.0 mRad

Caveat: this ignores 3fold astigmatism in pre/post field which is probably not appropriate, and any projector distortions

100 nm

Alignment can be tricky

Why?

Although PED has been around since 1992, and very actively used for ~10 years (mainly in Europe), there is *no* simple explanation (many have tried and failed)
Explanation is a bit rocket science

What, if any generalizations can be made? Role of Precession Angle Systematic Row Limit Importance of integration □ Phase insensitivity Important for which reflections are used □ Fast Integration Options

Why?

Precession integrates each beam over s_z

- Full dynamical theory
 - All reciprocal lattice vectors are coupled and not seperable

Levels of theory

- Partial dynamical theory (2-beam)
 - Consider each reciprocal lattice vector dynamically coupled to transmitted beam only
- Kinematical theory
 - \Box Consider only role of s_z assuming weak scattering
- Bragg's Law
 - $\Box I = |F(g)|^2$

I_{obs} depends upon |F(g)|, g, ϕ (precession angle) which we "correct" to the true result Options:

Early Models

- 0) No correction at all, $I=|F(g)|^2$
- 1) Geometry only (Lorentz, by analogy to xray diffraction) corresponds to angular integration
- 2) Geometry plus multiplicative term for |F(g)|

Bragg's Law fails badly (Ga,In)₂SnO₅

Kinematical Lorentz Correction

 $I(g) = \int |F(g) \sin(\pi t s_z)/(\pi s_z)|^2 ds_z$

s_z taken appropriately over the Precession Circuit t is crystal thickness (column approximation) ϕ is total precession angle $I(g) = |F(g)|^2 L(g,t,\phi) \qquad L(g,t,\phi) = g \sqrt{1 - \left(\frac{g}{2R_0}\right)^2}$

K. Gjønnes, Ultramicroscopy, 1997.

Kinematical Lorentz correction: Geometry information is insufficient

Need structure factors to apply the correction!

2-Beam (Blackman) form $I_{Blackman}(t) = \int_{0}^{A_{g}} J_{0}(2x) dx; A_{g}(k) \propto tF(k)$

Limits:

$$\begin{array}{l} A_g \text{ small}; I_{dyn}(k) \propto I_{kin}(k) \\ A_g \text{ large}; I_{dyn}(k) \propto \sqrt{I_{kin}(k)} = |F_{kin}(k)| \\ \text{But...} \end{array}$$

This assumes integration over all angles, which is not correct for precession (correct for powder diffraction)

Blackman Form

The Blackman curve (Blackman [1939]) for the ratio of dynamical to kinematical intensities for a ring pattern as a function of $A = \sigma H \Phi_h$. The experimental points are those obtained by Horstmann and Meyer [1965], from measurements on ring patterns from aluminum films at various voltages. The short horizontal lines indicate values calculated using the Bethe potentials, equation (12). (After Horstmann and Meyer | 1965].)

Alas, little better than kinematical

Two-Beam Form

 $I(g) = \int |F(g) \sin(\pi t s^{eff}_z) / (\pi s^{eff}_z)|^2 ds_z$ s_z taken appropriately over the Precession Circuit s_z^{eff} = (s_z^2 + 1/\xi_g^2)^{1/2} $\xi_g = \frac{\pi V_c \cos \theta_B}{\lambda F_o}$

Do the proper integration over s_z

Two-Beam Integration: Ewald Sphere

2-Beam Integration better

Some numbers

See Sinkler, Own and Marks, Ultramic. 107 (2007)

Fully Dynamical: Multislice

- "Conventional" multislice (NUMIS code, on cvs)
- Integrate over different incident directions 100-1000 tilts
- $\phi = \text{cone semi-angle}$
 - \bigcirc 0 50 mrad typical
- t =thickness
 - \square ~20 50 nm typical
 - □ Explore: 4 150 nm
- g = reflection vector
 - \Box $|g| = 0.25 1 \text{ Å}^{-1}$ are structure-defining

Multislice Simulation

Multislice simulations carried out using 1000 discrete tilts (8 shown) incoherently summed to produce the precession pattern¹

How to treat scattering?

- 1) Doyle-Turner (atomistic)
- 2) Full charge density string potential -- later

Multislice Simulation: works (of course)

Global error metric: R₁

- Broad clear global minimum atom positions fixed
- R-factor = 11.8% (experiment matches simulated known structure)

 \Box Compared to >30% from previous precession studies

- Accurate thickness determination:
 - □ Average *t* ~ 41nm (very thick crystal for studying this material)

(Own, Sinkler, & Marks, in preparation.)

Quantitative Benchmark: Multislice Simulation

(Own, Sinkler, & Marks, in preparation.)

Separable corrections fail; doing nothing is normally better

Partial Conclusions

- Two-beam correction is not bad (not wonderful)
- Only correct model is full dynamical one (alas)
- N.B., Other models, e.g. channelling, so far fail badly – the "right" approximation has not been found

- What, if any generalizations can be made?
- Role of Precession Angle
 - Systematic Row Limit
- Importance of integration
 - Phase insensitivity
 - □ Important for which reflections are used

Role of Angle: Andalusite

- Natural Mineral
 - $\square Al_2SiO_5$
 - □ Orthorhombic (Pnnm)
 - **a**=7.7942
 - **b**=7.8985
 - **c**=5.559
 - □ 32 atoms/unit cell
 - Sample Prep
 - Crushm Disperse on holey carbon film
 - Random Orientation

[010]

Measured and Simulated Precession patterns

32 mrad

 $[\overline{001}]$

[110]

Decay of Forbidden Reflections

- Decay with increasing precession angle is exponential
 - □ The non-forbidden (002) reflections decays linearly
 - $I = A \exp(-D\phi)$

	D(001)	D(003)
Experimental	0.109 R ² =0.991	0.145 R ² =0.999
Simulated (102nm)	0.112 R ² =0.986	0.139 R ² =0.963
Simulated 28-126 nm	0.112±0.012	0.164±0.015

Rate of decay is relatively invariant of the crystal thickness

Slightly different from Jean-Paul's & Paul's – different case

Forbidden, Allowed by Double Diffraction

Rows of reflections arrowed should be absent ($F_{hkl} = 0$) Reflections still present along strong systematic rows Known breakdown of Blackman model For each of the incident condition generate 50 random phase sets {f} and calculate patterns:

Single settings at 0, 12, 24 and 36 mrad (along arbitrary tilt direction).

Phase and Averaging

At fixed semi-angle (36 mrad) average over range of a as follows: 3 settings at intervals of 0.35° 5 settings at intervals of 0.35° 21 settings at intervals of 1°

For each **g** and thickness compute avg., stdev:

$$\overline{I}(\mathbf{g},t) = \frac{1}{50} \sum_{\{\varphi\}} I(\mathbf{g},t) \quad \sigma(\mathbf{g},t) = \left[\frac{1}{50} \sum_{\{\varphi\}} I(\mathbf{g},t)^2 - \overline{I}(\mathbf{g},t)^2\right]^{\frac{1}{2}}$$

Phase independence when averaged

Sinkler & Marks, 2009

Why does it work?

- If the experimental Patterson Map is similar to the Bragg's Law Patterson Map, the structure is solvable – Doug Dorset
- If the deviations from Bragg's Law are statistical and "small enough" the structure is solvable – LDM

Automated Diffraction Tomography (ADT)

Most electron diffraction use TEM on-zone (oriented) patterns

ADT approach: collection of <u>full</u> <u>3D reciprocal space</u> starting from <u>not oriented patterns</u>

Courtesy : Prof. U Kolb UMainz

ADT concept

diffraction tomography. Part II – Cell parameter determination. U. Kolb, T. Gorelik and M.T. Otten, *Ultramicroscopy*, **108**, 763-772 (2008).

ASTAR (EBSD-TEM like)

Automatic Crystal Orientation/Phase mapping for TEM

www.nanomegas.com

Grenoble

7.50 µm = 50 steps IPF Map [101]

NEW precession application

"EBSD" – TEM

EBSD-TEM : beam is scanned over the sample (eg. $10 \mu \times 10 \mu$)

spot electron diffraction patterns are collected (<u>NOT</u> sensitive to stress/ strain or surface sample preparation like in EBSD-SEM)

Thousands of experimental spot ED patterns are acquired by a very fast optical CCD camera attached to TEM screen (180 patterns/sec)

Slow scan CCD can also be used (but slow : 20-30 patterns/sec)

Thousands of theoretical ED patterns are generated (templates) from .cif files or commercial databases for all known phases in a sample

Template matching is used (by cross-correlation of all experimental ED patterns with all templates) to generate most probable orientation of every scanned position in the sample.

Comparison SEM-(EBSD) vs TEM spatial resolution

ASTAR : diffraction pattern adquisition

EBSD-TEM : Automated Crystal Orientation Mapping

Bragg Spot pattern

ズ

PED is

- Approximately Invertable
- Pseudo Bragg's Law
- □ Approximately 2-beam, but not great
- Properly Explained by Dynamical Theory

PED is not

- □ Pseudo-Kinematical (this is different!)
- □ Fully Understood by Dummies, yet
- Important offshoots ADT and OIM

Generate initial structure estimate Intial Bragg's Law Analysis or part of data

Two-Beam Integration: Ewald Sphere

Bragg's Law (reference)

Precession pattern (experiment) $\phi = 24$ mrad

Speculation...Full Method

Generate initial structure estimate
 Intial Bragg's Law Analysis or part of data
 Use 2-beam approximation to invert/correct
 Partial refinement, using 1/2 kpoint Bloch-Wave method

Approximation of precession circuit by series of g-vector tilts:

=> increasingly accurate precession calculation

Precession calculations for (Ga,In)₂**SnO**₅, 36 mrad semi-angle, increasing numbers of eigensolutions.

Speculation...Full Method

- Generate initial structure estimate
 Intial Bragg's Law Analysis or part of data
 Use 2-beam approximation to invert/correct
 Partial refinement, using 1/2 kpoint Bloch-Wave method
 - Final full refinement using 25-100 beam BW (+Bethe terms, e.g. Stadleman or NUMIS + dmnf, large residual code)

Questions ?