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DFT Mixing for Dummies 
Laurence Marks, October 25, 2022 

The purpose of these notes is to provide a basic introduction to what is called “Mixing” in the 
DFT literature, somewhat general although it has some description of parts which are currently 
in the Wien2k code. The intent is not to provide a fully rigorous description, rather something 
which is hopefully a bit readable, albeit without all of the mathematics. Alas, you can’t escape 
math, sorry!  

These notes go through the basics in terms of how to think about the density as well as other 
variables, and what the effect of running through an iteration cycle. How the steps are combined 
to produce the next step, as well as important issues such as scaling, predicting the Greed and 
also trust regions are sketched. The inclusion of atom displacements is also described in terms of 
how this is done. 

The last sections are intended to give some insight into how the process of mixing works, drawing 
analogies to water running downhill, from canyons to lazy rivers. The final part deal with, very 
briefly, some of the scientific myths of mixing as well as some technical details for coders of 
mixers, as well as Wien2k. The final section has specifics for the Wien2k code. 
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1. What is Mixing? 
The majority of density functional (DFT) codes use a self-consistent approach to determining the 
electron density, as well as any other terms involved such as the kinetic-energy density, orbital 
potentials or exact exchange components. The basic idea is illustrated below, and involves a cycle 
where, for a given density ρ(r), in four steps one: 

1) Calculates the effective potential Veff (and other terms if needed) 
2) Solves for the orbitals using this potential 
3) Compute what the density and other relevant terms would be with these orbitals by filling 

them up to the Fermi energy 
4) Change (mix) the densities and others to produce a new value, then go back to 1) and 

repeat until the process converges.

 

The density is “self-consistent” when the density one uses to calculate the potential is identical 
to the density that comes out from step 3). The process of changing the densities is called mixing 
in the DFT literature, probably because most methods involve combining or “mixing” the 
densities from previous iterations in some sense. In the older mathematics literature this would 
be called solving for a set of non-linear equations; in other areas of mathematics it is called 
solving a fixed-point problem. 

The term “fixed-point” here deserves a little expansion, because it is a 
useful way of thinking about these problems. Rather than as some solid 
matter, we think about how the density changes as a dynamic variable 
– a moving object such as a piece of chocolate cake moving with time 
under the influence of Schrödinger’s equation (OK, Dirac’s chocolate 
equation if you feel picky). A fixed-point would be when the cake stays 
in the same position; a bad problem would be when the cake gets 
eaten. 

To handle the various terms that will be encountered in these notes it is useful to introduce a 
few different terms – more will come later. The first is to give a number for the iteration, i.e. to 
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refer to densities that we use in Step 1) as 𝜌𝜌𝑘𝑘 for the “k” iteration, dropping the “(r)” for brevity. 
The second is to call the densities that come out from 3) as 𝐹𝐹(𝜌𝜌𝑘𝑘), where the “𝐹𝐹” would be called 
a mapping that converts from the old densities to new values. 

For illustrative purposes only, the simplest approach is to use what is called the Pratt Method. In 
such a case the next density is given by 

𝜌𝜌𝑘𝑘+1 = (1 − 𝛼𝛼)𝜌𝜌𝑘𝑘 + 𝛼𝛼𝐹𝐹(𝜌𝜌𝑘𝑘)        (1) 

The parameter “𝛼𝛼” is often called the “mixing parameter”, but a better approach is to call it the 
“mixing Greed”. This is a little subtle, but is quite fundamental to understanding how the whole 
process of mixing works. The term “Greed algorithm” has an accepted definition1: 

“A Greedy algorithm always makes the choice that looks best at the moment. That is, it makes a 
locally optimal choice in the hope that this choice will lead to a globally optimal solution.” 

As an illustration, suppose you want a total of 41 cents from a combination of 25, 10 and 4 cent 
coins. The Greedy approach is to reduce this as much as possible with 25 cents, so we take one 
leaving 16 cents more needed. Next, we reduce this as much as possible with a 10 cent coin – 
leaving 6. Then we can only use a single 4 cent; oops, we can only make 39 cents! 

 In this case the Greedy algorithm failed – the right choice is of course a 25 cent and four 4 cent 
coins, no 10 cents. Using the 10 cent coin was too Greedy. There are cases where being as 
unGreedy as possible is bad. For instance, suppose that in the previous case we add 0.001 cent 
coins. The least Greedy approach is to use just these 0.001 cent coins, 45,000 of them, which 
would be far too many to carry. 

For DFT problems a large mixing Greed (e.g. a value of 1) indicates that we think that the density 
that comes out from Step 3), the mapping 𝐹𝐹(𝜌𝜌𝑘𝑘), is a better approximation than what we started 
with. While there are some materials such as bulk MgO where this may be true, in general it is 
not. Slightly more complicated, it is not guaranteed that using the Pratt step in fact improves the 
density, and it may not be the best direction to change the density. While if one is very close to 

                                                       
1 Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C., Introduction to Algorithms. MIT Press: Boston, US, 2009; p 
1291 



5 
 

a converged density it may be, if you are a long way away then nothing is certain. On the other 
side, using a mixing Greed of 0.001 would, at least for the Pratt method, take a vast number of 
iterations to converge (if it does) so is also bad. 

The question this raises is how Greedy should one be, and whether one should use the Pratt step 
or something else. This is at the heart of mixing; good algorithms do this well, and are simple 
forms of artificial intelligence codes. 

2. What Steps can one use? 
The next question one has to think about is whether the only 
choice is the mapping 𝐹𝐹(𝜌𝜌𝑘𝑘) and the current step, or 
whether one can use more than this. The answer is that one 
has, at least in principle, all the prior densities and mappings. 
The very old ones are generally from a density which is quite 
different from the current one, so are less reliable for the 
purposes of guiding what the next density should be. Hence 
it is standard practice to limit those used to some reasonable number such as the last 8-16. Like 
many things in mixing and for algorithms in general, there is often no hard proof of what one 
should use, just experience based upon tests. 

However, we should remember that no algorithm is perfect, so “bad steps” can always occur. A 
slightly bad step is no problem, and often the algorithms do very well despite these. 
Unfortunately, a really bad step can lead to misleading information. One can think about these 
as equivalent to falling into a pit: the landscape at the bottom of the pit does not provide much 
useful information, particularly if there are stakes present! One has to include ways to throw 
away very bad steps, and also to try and avoid taking them – which often happens if the algorithm 
is being too Greedy. If the step was awful, it can still be used to estimate a reduction (for that 
given step) that can be used in the next cycle – and throw away the data from the bottom of the 
pit. If the step was bad but not awful (a shallow pit, only half a meter) it makes sense to keep it, 
but go back to where we were before and recalculate to avoid the depression. 

3. How to combine the steps? 
There are two ways to consider combining the steps, one via a 
weighted least-squares approach, the other via a Taylor series. For 
very simple problems they are identical, and this is also true for many 
more complex and difficult problems. Where they differ is in how 
readily they yield understanding of their limitations, and what can 
(and does) go wrong. For the later the Taylor series approach is much 
better, so it is the one used here. 

First, a few more math terms and equations, so we can express 
things better later. First, we will define the residue 
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 𝑅𝑅𝑘𝑘 = 𝐹𝐹(𝜌𝜌𝑘𝑘) − 𝜌𝜌𝑘𝑘         (2) 

Our aim is to have the residue be zero, and its value both as a vector and absolute is a measure 
of how bad the density at iteration k is. Looking back to the Pratt step, that can also be written 
as 

𝜌𝜌𝑘𝑘+1 = 𝜌𝜌𝑘𝑘 + 𝛼𝛼𝑅𝑅𝑘𝑘         (3) 

In a sense the residue is like a force term (the negative of a gradient), so it is somewhat like what 
is called the “steepest descent” method in the literature on minimizing values such as the energy. 
The steepest decent method only walks straight downhill. As you might guess, the steepest 
descent method is about the worst approach possible. 

Continuing to define values, we next observe that all that really matters is the change in both the 
residue and the density as the algorithm progresses; absolute values are less important. We 
therefore introduce two vectors for these which are relative to the current values (k):  

𝑠𝑠𝑖𝑖 = 𝜌𝜌𝑖𝑖 − 𝜌𝜌𝑘𝑘 ;  𝑦𝑦𝑖𝑖 = 𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑘𝑘        (4) 

(As a minor technical aside, in the mathematics literature slightly different forms are used which 
are not so useful for DFT problems.) 

What we now do is expand the residue as a Taylor series, that is: 

𝑅𝑅 =  𝑅𝑅𝑘𝑘 + 𝐵𝐵𝑘𝑘 𝑠𝑠𝑘𝑘+1 + 𝑠𝑠𝑘𝑘+1 𝐶𝐶𝑘𝑘 𝑠𝑠𝑘𝑘+1 + ⋯       (5) 

Here 𝐵𝐵𝑘𝑘 is called a Jacobian, really a matrix, which relates how the residue will change with 
position, 𝐶𝐶𝑘𝑘 is the next higher-order term and in principle this series goes on forever. What we 
do is cross our fingers and ignore 𝐶𝐶𝑘𝑘 and other similar non-linear terms, which is fine so long as 
our next change 𝑠𝑠𝑘𝑘+1 is not too large. (Of course, “too large” is not a well-defined term, and can 
vary with the problem.) We should not forget this – it comes up again later. 

We now target having a zero residue, which requires that we solve for our next step 𝑝𝑝𝑘𝑘+1 using 
the inverse Jacobian 𝐻𝐻𝑘𝑘 (inverse of 𝐵𝐵𝑘𝑘) in the form: 

𝑝𝑝𝑘𝑘+1 =  𝐻𝐻𝑘𝑘 𝑅𝑅𝑘𝑘          (6) 

This is the “Predicted Step”, that is what our value of 𝐻𝐻𝑘𝑘 indicates we should use. It is not 
everything, there are parts of the residue which when multiplying by 𝐻𝐻𝑘𝑘 give nothing. We will 
come back to this “Unpredicted Step” later, but first we need to better define 𝐻𝐻𝑘𝑘. 
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4. How to construct the Jacobian and its 
inverse? 

The next step is a bit subtle, and is one place where the 
concept of Greed comes in again. What we do is use the 
prior values of 𝑠𝑠𝑘𝑘 and 𝑦𝑦𝑘𝑘 for this. The matrix 𝐻𝐻𝑘𝑘 has as 
many rows and columns as there are variables in the DFT 
density, and we only have at most 8-16 values of past 
steps, so we cannot fully define it, we have to use some reasonable approximate method. In 
addition, the full matrix would almost certainly require far too much computer memory, so we 
need some smaller form so as not to destroy our computer. 

First, we say that our target matrix has to explain our previous steps, which is equivalent to what 
is called the Secant equation, specifically for the estimate we have in the k’th cycle 𝐻𝐻𝑘𝑘: 

𝑠𝑠𝑘𝑘 =  𝐻𝐻𝑘𝑘 𝑦𝑦𝑘𝑘           (7) 

We do not want to do this for just a single value, instead for all the relevant prior histories. 
Defining new matrices to hold these of 𝑆𝑆𝑘𝑘 = (𝑠𝑠𝑘𝑘, 𝑠𝑠𝑘𝑘−1, … ) and 𝑌𝑌𝑘𝑘 = (𝑦𝑦,𝑦𝑦𝑘𝑘−1, … ), we can 
generalize to use 

𝑆𝑆𝑘𝑘 =  𝐻𝐻𝑘𝑘 𝑌𝑌𝑘𝑘           (8) 

Just as equation (7) is the secant equation, (8) is a multisecant equation and methods using this 
form are called multisecant methods. 

Next, one approach is to use the smallest possible value of 𝐻𝐻𝑘𝑘 that satisfies the multisecant 
equation. The matrix that does this is a variant of a famous type of inverse, the Penrose-Moore. 
The form of this is given by 

𝐻𝐻𝑘𝑘 = 𝑆𝑆𝑘𝑘 (𝑌𝑌𝑘𝑘𝑇𝑇𝑌𝑌𝑘𝑘 + 𝛿𝛿𝛿𝛿)−1 𝑌𝑌𝑘𝑘𝑇𝑇        (9) 

with the symbol “T” being used to represent a transpose of the rows and columns. The form here 
includes a regularization term 𝛿𝛿𝛿𝛿 which is needed as the matrix 𝑌𝑌𝑘𝑘𝑇𝑇𝑌𝑌𝑘𝑘 might have some zeros so 
could blow up when we take the inverse. The regularization is equivalent to a Wiener filter, and 
also acts to reduce the effects of noise in the numerical calculations which can always happen – 
computers are not infallible, neither are coders. 

This is the smallest value of 𝐻𝐻𝑘𝑘, so makes the least assumptions and as such is the least Greedy. 
It will produce the smallest possible step for the current residue, consistent with the previous 
history.  

It is not the only choice. An alternative approach is to work instead with the inverse, i.e. solve for 

𝑌𝑌𝑘𝑘 =  𝐵𝐵𝑘𝑘 𝑆𝑆𝑘𝑘           (10) 
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which in a similar fashion, without the regularization leads to 

𝐵𝐵𝑘𝑘 = 𝑌𝑌𝑘𝑘 (𝑆𝑆𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘)−1 𝑆𝑆𝑘𝑘 
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻𝑘𝑘 = 𝑆𝑆𝑘𝑘 (𝑆𝑆𝑘𝑘𝑇𝑇𝑌𝑌𝑘𝑘)−1 𝑆𝑆𝑘𝑘 

𝑇𝑇       (11) 

It is a little more complicated to regularize the inverse for 𝐻𝐻𝑘𝑘, but it can be done using a singular-
values decomposition, which I will not discuss here. (In practice this has to be done, otherwise 
you may get chocolate on your face.) This produces the largest step consistent with the previous 
history, and as such is the Greediest. As a consequence, it is harder to use and has failed for many 
in DFT codes, although this is really not a fundamental problem and may be because when people 
tried they did not safeguard it. (This algorithm is in Wien2k – it works, but is not the best.) 

While the above are two limits, they are not the only ones. In fact, any matrix 𝑇𝑇𝑘𝑘 will satisfy the 
multisecants equation if one has 

𝐻𝐻𝑘𝑘 = 𝑆𝑆𝑘𝑘 (𝑇𝑇𝑘𝑘𝑇𝑇𝑌𝑌𝑘𝑘)−1 𝑇𝑇𝑘𝑘 
𝑇𝑇   and 𝐵𝐵𝑘𝑘 = 𝑌𝑌𝑘𝑘 (𝑇𝑇𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘)−1 𝑇𝑇𝑘𝑘 

𝑇𝑇     (12) 

A reasonable way is to use some linear combination, i.e.  

𝑇𝑇𝑘𝑘 = (1 − 𝜆𝜆)𝑆𝑆𝑘𝑘 + 𝜆𝜆𝑌𝑌𝑘𝑘        (13) 

The least Greedy method is with 𝜆𝜆 = 1, the most Greed is 𝜆𝜆 = 0, and this combination allows 
one to move between the two. This method is called MSR1 in the Wien2k code, where for coding 
and historical reasons 𝑇𝑇𝑘𝑘 = 𝛼𝛼𝑆𝑆𝑘𝑘 + 𝑌𝑌𝑘𝑘 is used to make the scaling easier. 

The least Greedy approach is called MSEC in the Wien2k code, and DIIS or Pulay mixing in many 
other codes (although see later, as there is a scaling issue as well). The Greediest is called MSGB 
in the Wien2k code, which stands for “Multisecant Good Broyden”. This is an interesting example 
of divergence of communities. In his original work Broyden could not get the least Greedy 
approach to work, so it was called “Bad Broyden” whereas the one he could became called “Good 
Broyden”. (For rigor, he did not use a multisecants approach.) The majority of the mathematics 
literature has focused on Good Broyden methods. For DFT problems the Bad Broyden approach 
dominates the literature. One exception is in Wien2k where the hybrid method MSR1 is used, 
and it in fact out performs both the alternatives. 

From the coin problem discussed before, sometimes Greed is good but also being not Greedy 
enough can be bad. To date nobody has been able to fully explain under what conditions the two 
cases of good and bad Broyden are appropriate. At least partially one can understand why MSR1 
can be better if you think about the set of residues which, when multiplied by 𝐻𝐻𝑘𝑘 (i.e. the product 
𝐻𝐻𝑘𝑘𝑅𝑅𝑘𝑘) give non-zero values. With the bad-Broyden method it is only residues which are a linear 
combination of the prior residues 𝑌𝑌𝑘𝑘; with good-Broyden it is the residues which are linear 
combinations of the prior step 𝑆𝑆𝑘𝑘. In contrast, the hybrid method is the sum of these two. I will 
note that this is only a reasonable explanation. In order to choose the value of 𝜆𝜆, the largest value 
such that 𝑇𝑇𝑘𝑘 does not have negative eigenvalues is used, searching up from the value 𝜆𝜆 = 0. This 
is a fundamental feature of the stability of linear systems, albeit there is a change in sign from 
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what is commonly used. The type of behavior one has for each eigenvalue is, as illustrated below 
in terms of the real and imaginary parts of the eigenvalue: 

1) If the eigenvalue is positive with no imaginary part, it is a good, converging value or sink. 
2) If the eigenvalue is positive with an imaginary part, it will spiral in to the solution, a 

spiral sink; the large the imaginary part the more it will spiral 
3) If the eigenvalue is negative with an imaginary part, it will spiral away from the solution, 

a spiral source. 
4) If the eigenvalue is negative, it moves away – it is divergent or just a source. 

We know that at the solution the eigenvalues of the Jacobian and its inverse must be positive, as 
the fixed-point solution is also a minimum of the energy. The choice of 𝜆𝜆 is equivalent to choosing 
the Greediest approach that will also have the right type of properties. 

5. To Scale or Not to Scale, that is the question 
In the last section I talked about generating 𝐻𝐻𝑘𝑘 (and/or 𝐵𝐵𝑘𝑘) 
from the prior steps, but there is one additional refinement to 
ponder – how do we think about the prior steps. In the original 
approaches where this type of method was used mainly for 
optimization, the approach used was equivalent to treating 
them as directions, that is along the direction given by 𝑠𝑠𝑘𝑘 the 
residue changed by 𝑦𝑦𝑘𝑘 – the left below with “5” the current 
position and 1-4 older ones. If we just treat them this way then it does not matter how large they 
are for different steps.  

However, when we combine them to give us 𝑆𝑆𝑘𝑘 and 𝑌𝑌𝑘𝑘 it does matter. The reason is that the 
larger ones will tend to dominate, for instance with raw values as shown above in the middle. If 
we scale them all to equal size then we are treating them more as directions as on the right. 
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Technically this is equivalent to thinking about the set of histories as defining a type of numerical 
derivative called a Simplex Gradient. In tests it is better to scale them such that the change in 
residue is the same. In tests the best scaling is to scale the diagonal of 𝑇𝑇𝑘𝑘 = (1 − 𝜆𝜆)𝑆𝑆𝑘𝑘 + 𝜆𝜆𝑌𝑌𝑘𝑘 to 
unity, which requires coupling the positivity constraint above with the scaling. 

6. Starting to pull everything together: Predicted and Unpredicted 
We now have most of the pieces, it is time to start to pull them together. Back towards the start 
I mentioned that our previous steps give us information from which we can predict part of the 
next step, to recap this will be (ignoring regularization): 

 𝑝𝑝𝑘𝑘 =  𝐻𝐻𝑘𝑘 𝑅𝑅𝑘𝑘 = 𝑆𝑆𝑘𝑘 (𝑇𝑇𝑘𝑘𝑇𝑇𝑌𝑌𝑘𝑘)−1 𝑇𝑇𝑘𝑘 
𝑇𝑇𝑅𝑅𝑘𝑘        (14) 

This only includes part of the residual – there will still be some left, which is called the 
Unpredicted step and is given by 

 𝑢𝑢𝑘𝑘 =  𝑅𝑅𝑘𝑘 − 𝑌𝑌𝑘𝑘 (𝑇𝑇𝑘𝑘𝑇𝑇𝑌𝑌𝑘𝑘)−1 𝑇𝑇𝑘𝑘 
𝑇𝑇𝑅𝑅𝑘𝑘        (15) 

One has the 𝑌𝑌𝑘𝑘 on the left-hand side since this has to remove the prior 
residuals from our current residue, since we have already accounted for 
it. Our next density will therefore be 

 𝜌𝜌𝑘𝑘+1 =  𝜌𝜌𝑘𝑘 +   𝛼𝛼𝑘𝑘𝑢𝑢𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑝𝑝𝑘𝑘         (16) 

The mixing Greed (aka mixing factor) 𝛼𝛼𝑘𝑘 has at long last reappeared, 
similar to what we had before but now it only applies to the that part 
of the residual about which we know nothing – the unpredicted part. 
This Unpredicted Greed now determines how aggressively we are going 
to step into uncharted territory – hopefully not off a cliff. 

Another term has also appeared, 𝛽𝛽𝑘𝑘, which multiplies the predicted part – the Predicted Greed. 
You might think that this is wrong, since we know this part we should just use it but that is being 
too Greedy – remember that we ignored the higher-order terms in the Taylor series. If our step 
is small enough we don’t have to worry about these non-linear terms. However, in general they 
can be there and we need to somehow reduce how much of the predicted we use. 

How much of the unpredicted and predicted – that’s the next topic. 

7. How Much Predicted and Unpredicted Step? 
The next part is deceptively simple, but fortunately for us the main ideas have been known in a 
different field, optimization, so we can use them. We start with some guess at both of the two 
scalings 𝛼𝛼1 and 𝛽𝛽1 for our first step. Typically the mixing Greed should be small, and the predictive 
Greed taken as unity. If this gives us a good reduction in the residue then we tentatively increase 
the mixing Greed; if it is bad we decrease it a little, perhaps more we would reduce the predictive 
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Greed. This type of approach was used in earlier versions of the Wien2k mixer and has been 
incorporated into a few other DFT codes that follow the approach in these notes. 

There is another method which is better in practice; after all, just 
increasing or decreasing does not exploit all the information that we 
have available. The idea is to look at what we did in the last cycle, and 
then use this to estimate what the best values of the two Greed 
parameters should have been – we look backwards.  

Being specific, for the Unpredicted Greed from our last iteration 𝑢𝑢𝑘𝑘, we 
work out the best step that we should have taken. This is equivalent to 
finding an estimate 𝛼𝛼𝐸𝐸𝐸𝐸𝐸𝐸 that minimizes the last unpredicted step 
component for our current Jacobian 𝐵𝐵𝑘𝑘 

|𝑢𝑢𝑘𝑘−1 − 𝛼𝛼𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵𝑘𝑘𝑢𝑢𝑘𝑘−1|2     (17) 

Which we can solve as 

𝛼𝛼𝐸𝐸𝐸𝐸𝐸𝐸 = |𝑢𝑢𝑘𝑘−1|2 |𝑢𝑢𝑘𝑘−1𝐵𝐵𝑘𝑘𝑢𝑢𝑘𝑘−1|⁄         (18) 

In a similar way we look at what would have been the best Predicted Greed to use, which means 
that we solve for a scaling of the Predicted step of the last iteration 𝑝𝑝𝑘𝑘−1 against the part of the 
residue that it corresponded to: 

|(𝑅𝑅𝑘𝑘−1 − 𝑢𝑢𝑘𝑘−1) − 𝛽𝛽𝐸𝐸𝐸𝐸𝐸𝐸𝐵𝐵𝑘𝑘𝑝𝑝𝑘𝑘−1|2       (19) 

Which gives us 

𝛽𝛽𝐸𝐸𝐸𝐸𝐸𝐸 = |𝑅𝑅𝑘𝑘−1 − 𝑢𝑢𝑘𝑘−1|2 |(𝑅𝑅𝑘𝑘−1 − 𝑢𝑢𝑘𝑘−1)𝐵𝐵𝑘𝑘𝑝𝑝𝑘𝑘−1|⁄ +  𝛿𝛿    (20) 

where 𝛿𝛿~0.1 helps convergence. To avoid massive changes, these estimates are combined with 
what were present in the previous cycle; in practice a simple exponential moving average (EMA) 
works, i.e. using 

 𝛽𝛽𝑘𝑘 = (𝛽𝛽𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛽𝛽𝑘𝑘−1) 2⁄  and 𝛼𝛼𝑘𝑘 = (𝛼𝛼𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛼𝛼𝑘𝑘−1) 2⁄      (21) 

plus some reasonable bounds to ensure that massive changes don’t occur, for instance increase 
by more than 5/3 or decrease by 3/5, or the values get too large or small. 

We can combine now these values, again with the last step to estimate what probably should 
have been the step that was used in the last cycle, that is 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸 =  𝛼𝛼𝑘𝑘𝑢𝑢𝑘𝑘−1 + 𝛽𝛽𝑘𝑘𝑢𝑢𝑘𝑘−1        (22) 

We can now use this to estimate how large a total step we should allow, and also take parts of 
this estimate if we want to, for instance, limit how large a change in the atomic positions we 
allow. For these we need a Trust region. 
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8. Controlling the Step: Trust Radii 
Even with the best of choices for 𝐻𝐻𝑘𝑘 and 𝐵𝐵𝑘𝑘, we are still 
neglecting the higher-order terms in the Taylor expansion. If 
we go to equation (4), we will be fine so long as the step we 
take is small enough, more strictly if 

𝐵𝐵𝑘𝑘 ≫  𝐶𝐶𝑘𝑘 𝑠𝑠𝑘𝑘+1     (23) 

Unfortunately the higher-order 𝐶𝐶𝑘𝑘 will change both with the type of problem one has as well as 
whether one is close to or far from the solution. What one therefore has to do is limit the step 
such that it is small enough that equation (23) is obeyed, even when we do not know how larger 
𝐶𝐶𝑘𝑘 is! The way we do this is by setting up a constrained problem where we limit the size of the 
step, and then find the best value to use as illustrated below with dashed contours for the residue 
indicated. Shown in the Figure below is the Trust Radius, which is the maximum that we are going 
to allow. The Predicted Step is larger than this, so we reduce it following the Constrained Step 
path, which gives us the best reduction for a given magnitude. 

 

To achieve this, we minimize the Lagrangian problem to find the step f with a Lagrange multiplier 
𝜉𝜉 and a trust radius  ℜ 

ℒ =  |𝑅𝑅𝑘𝑘 − 𝐵𝐵𝑘𝑘𝑓𝑓|2 − 𝜉𝜉{|𝑓𝑓|2 − ℜ2}       (24) 

where we limit the step to being a combination of the prior steps. There are many ways to do 
this; in practice the code starts from the full step, then increases the Lagrange multiplier until the 
constraint are satisfied. 

Similar to how the two Greeds were estimated, we use the estimate from above average with 
the latest value for the trust radius ℜ. Exactly the same procedure is used to control the 
movement of atoms and any other variable if needed. (The less constraints the better, and they 
are rarely needed for well-constructed problems.) 



13 
 

9. Optimizing Positions: First the Old Way 
Everything up to now is what is in the Wien2k code, and is similar to what is in other codes 
(although scaling, control of the two Greeds and trust regions are not used in many to most other 
codes). One subtle difference is that in Wien2k one does not just mix the densities (and other 
variables), in fact one can mix atomic positions. This is now optimization of the atomic positions 
in the unit cell. 

The old method, which is common in many codes and is available using the “PORT” option, is to 
use a double loop: 

1) Iterate the density until it is self-consistent, keeping the atomic positions fixed 
2) Change the atomic positions, then go back to 1) and keep going until the forces are 

low enough. 

This approach is illustrated below. At any given point we first converge the density along the red 
arrows, moving onto the Born-Oppenheimer Surface which is defined as the surface where the 
density is converged. Then a blue step is taken to improve the atomic positions, although it makes 
the density unconverged. Then one iterates, blue from some other program and red in the mixer. 

 

The way that steps are taken is not that different from how the Jacobian was constructed earlier. 
What is used are the gradients (forces) on the atoms, and the second derivative matrix is 
generated in a similar way from these. The most common and powerful method by a long way is 
the Broyden-Fletcher-Goldfarb-Shanno or BFGS method. One important difference is the second 
derivative approximation has a number of special properties (positive definite) which can be 
exploited with some trapping; more details can be found in numerous textbooks. 

One inefficiency about this approach is that the Jacobian is created new for each different density 
convergence, and we are throwing away information. Can we retain this information and do 
better? 
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10. Optimizing Positions: The New Way in MSR1a 
The key to the approach used in Wien2k is to go all the way back to how the residue was defined 
in equation (2), and now redefine it to include the gradients (negative of the forces) 𝐺𝐺: 

 𝑅𝑅𝑘𝑘 = (𝐹𝐹(𝜌𝜌𝑘𝑘) − 𝜌𝜌𝑘𝑘,−𝐺𝐺)        (25) 

The simple Pulay step of equation (3) now has a steepest decent term for the atomic positions. 
We now just use this in everything, that is all the earlier equations. The algorithm is illustrated 
below. 

 

The iterations now proceed down some contours of the residue that was extended in equation 
(25). In addition to the Born-Oppenheimer surface from before, there is another called the “Zero-
Force Surface” which is where the forces are apparently zero, but the density is not converged. 
In fact, we only had reliable forces when the density is converged, so it is better to call these 
“pseudo-forces”. 

That we do not have true forces does not matter; indeed, the energy that we have when the 
density is not converged is itself not the real one. All that matters is that at the solution the forces 
and the density are converged and accurate, and this is a true minimum (of everything). 

This works, but one caveat. There is coupling between atomic positions and the electron density, 
and this can be large in some systems such as metals; in insulators it is typically quite small. As a 
consequence, this approach where both the atom positions and densities are simultaneously 
converged is trickier, which is why the various approaches in the previous sections to better 
control the two Greed parameters as well as the trust region control were developed. 
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11. Canyons, Lazy Rivers and the Sea 
One cannot predict in some cases how the mixing will behave, it heavily depends upon the 
problem, both what the structure and electronic states are as well as how well it is constructed. 
Problems which are well-posed often converge better than ones which are badly posed. Silly 
problems, for instance DFT simulations of cold fusion with a hydrogen atom 0.1 Angstroms from 
a palladium atom behave…the way they should for something that dumb! While this a rather 
obvious example, there are many which are not good, which will similarly be very hard to 
converge – for instance nickel oxide without spin. (It might converge, but ….) 

A good way to think about mixing is in terms of water running downhill from the mountains to 
the sea. Sometimes it is running fast over rapids; sometimes squeezing through tight canyons or 
ambling rather lazily across a flat valley, the latter being called soft modes. These are when it 
takes a large change in the density or atomic positions to reduce the residue. One common 
example is for just the atomic positions, where the hard modes will be optimized first, then the 
soft modes. It turns out that mixing Greed is needed for the soft modes, more towards the 
aggressive “Good Broyden” 

One example case is the Red River in China and Vietnam, one of the straightest in the world 2. If 
we start from Dali (top left), and think about trying to end up in the Gulf of Tonkin then it will not 
be hard because the downstream direction only varies a little along the length. You can compare 
this to the Jin/Gam river which winds around a bit, but is not pathological. 

                                                       
2 By Kmusser - Own work, Elevation data from SRTM, drainage basin from GTOPO [1], all other features from 
Vector Map., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12063353 
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Contrasting is the Grand Canyon in the USA. Where one 
has very steep sides – the canyon walls which rise about 
1,800 meters from the river. Clearly in such a case if too 
large a step is made one runs into the walls – disaster! 
Instead the algorithm has to carefully step along, if 
needed retracing its steps a little when it hits the walls. 
Since we cannot predict how the river and the canyon 
walls will bend (the mixer does not have eyes), 
sometimes it will get things wrong. 

A final example is the Mississippi River3, which 
meanders very lazily as it approaches the Gulf of 
Mexico. If one were to follow the river exactly it would 
be much further than the distance a bird (or electron) 
flies. A well-constructed algorithm will recognize that 
the meanders are not important, and skip over them – 
converging much faster. This is not always the case, and 
sometimes algorithms will follow the path of the river, 
eventually reaching the sea…eventually! 

  

                                                       
3 By Kbh3rd - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10209178) 
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12. The Hard, the Soft and the Ugly Modes 
Understanding how the algorithms converge has some more complex aspects, in additions to the 
rivers discussed above. The behavior is not just dependent upon the number of variables; if it 
was then DFT problems with thousands to millions of variables would take longer than the life of 
a graduate student (a viable time unit) to converge. In fact, the convergence depends upon the 
eigenvalues and eigenvectors of the Jacobian. In a more physical sense we can think of these as 
modes – comparable, for instance, to soft modes of phonons or coupled electron-phonon waves, 

What matters is the number of eigenvalue clusters of the Jacobian, that is 
ones which are very similar to each other, and also the width of each 

cluster. As a simple example, consider the case where the contours of 
equal residue all lie on a sphere. When we move in any direction 
we change, equally, all the values. If instead we had an ellipse then 

we will change more along the short direction of the ellipse than the 
long – it will take longer to converge. Now extend this to multiple 
dimensions, and allow the ellipse to bend around…. 

In general, what one has are “hard” eigenvalues and eigenvectors, 
those where a small change in the density reduces the residue significantly; “soft” ones where a 
large density change is needed and “ugly” ones which are just noise and do nothing useful.  

In general, the algorithms will first converge the hard eigenvalues or eigenvalue clusters, then 
move down to the soft eigenvalues. Often one of the trickiest parts is converging the soft 
eigenvalues where there can be very 
large changes in variables (any and all) 
for not so much change in the residue. 

Very often how the algorithm is 
behaving can drastically change. One of 
the most common is when the density 
far from the solution is metallic, but as 
the solution is approached it becomes 
that of an insulator with a good gap. 
Similar things can happen many times. 
For instance, if we track the Colorado 
river from its source in the Rocky 
Mountains, it starts rushing downhill, 
then lazily goes through Lake Powell, 
avoids the walls in the Grand Canyon, 
again lazily traverses Lake Mead then 
finally ambles down to end up in the Gulf 
of California – multiple changes!  
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13. How can I speed up the convergence? 
Improve the model you are using. 

Often not having enough k-points, a bad choice of spin state and/or 
functional for the particular problem and a bad choice of technical 
parameters can make the mixing behave badly. In an ideal world the 
mixer will turn around, nudge (hit or slap?) the user and tell her that she 
is using bad parameters. In Wien2k sometimes the muffin-tin radii are 
too small, the potential has not been expanded far enough when it is 
calculated or the eigenvalues are calculated (lapw0 & lapw1). Too often the structure is just silly. 
For instance, a calculation of the ionic compounds Mg6+O32- is not going to behave well, the ion 
Mg6+ is nonsense. One of the most common catastrophes are surfaces, typically of oxides since 
these have many applications and calculations are easier than experiments, especially bad 
calculations. Very often people assume that one can simply cut the bulk and get something 
reasonable – the surfaces will shudder. 

If you are lucky, you might be able to adjust things slightly to improve the convergence, there can 
be times where an expert user knows more about how the mixing will work than the code. This 
is most important at the start, and if you know that a problem can be badly behaved it may be 
useful to employ smaller values for the Unpredicted Greed for the first step, and also the initial 
trust radius for the total step – see the end for the parameters in Wien2k to do this. While there 
are ways to adjust the mixer later, this is probably not a good idea. Even the author of the code 
rarely can do better than the algorithm. 

14. Don’t Panic: Restarts and More Trusts 
One well established method that sometimes helps which has been 
rediscovered multiple times for fixed-point as well as optimization is 
restarting – destroy all the prior history. The reason this can help is 
when the history is from a different type of problem – for instance the 
Colorado River history from the Grand Canyon will not be much use 
when crossing Lake Mead! Similar to this one could change the mode or add a Pratt step or two 
– again, breaking away from bad history. Unfortunately, there is no recipe that always works, the 
mixer does not have eyes and cannot tell when it has gone from mountain to lake…. 

One approach that can help in Wien2k is to increase the number of Trust Region controls. The 
default is only to control the total step size. One can add a Trust Radius for the total atomic step 
using ATLIM in case.inm. Other Trust Radii on the changes in the plane waves, density inside the 
spheres and density inside any one muffin tin can be added by specifying STIFF. Even more can 
be added by using STIFFER which borrows from older ideas, and does not allow any of the various 
parameters to increase unless the total Residue is decreasing. 

Improve the Model…..the best approach. 
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15. Will the iterations always converge to the right answer? 
The lowest possible energy, for the density by itself as well as when the atoms are included, is a 
point when density and other variables are all self-consistent (assuming that a fully consistent 
model is being used) – a fixed-point. However, the opposite is not true; it is possible to have fixed-
points which are not the lowest possible energies. This can occur when one has 4f electrons, but 
there are other cases; for instance, it is possible with 3d electrons. Many of these are where the 
spin state of the self-consistent solution is different from that with the lowest possible energy. 

Beyond that, nothing in fact guarantees that the 
iterations will converge! You will probably never run 
across a case like this, but they do exist. The case I know 
of is one where the density being used is some distance 
from the fixed-point, and has the wrong spin. In such a 
case you can end up having what appears to be 
something called a strange attractor, where the density 
can spiral around in a strange way in multiple 
dimensions, as shown on the left.4 Behavior like this is 
known in Chaos Theory, and sometimes the behavior of 
the density seems to be quite chaotic, more chaotic 
than the user. (Really a piece of chocolate cake as 
mentioned much earlier, trying to escape being eaten 

by a black hole.) 

Sometimes it seems to take forever, or the calculation may seem to be oscillating and the user 
does not know if the chocolate cake is slowly melting, getting burnt or reaching perfection. There 
are two main possibilities: 

a) It is not really oscillating. For instance, it could be 
that the spin is slowly changing – this can seem to 
take forever. It might also be that the electronic 
structure has changed, for instance from metallic to 
insulating, and the Jacobian is slowly evolving. 
When the atoms are also varying there are times 
when rather drastic changes are slowly taking place. 

b) It is slowly going through a canyon or following the 
path of a meandering river. In the literature we would talk about these as being “Tunnels”. 
This can also seem to take forever. Patience is a virtue, eventually you will see the light. 

                                                       
4 This work by Alan Richmond (‘Mandrian’) is licensed under a Creative Commons Attribution-NonCommercial 4.0 
International License. 
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16. Dispelling some common misconceptions  
Similar to many areas of science, myths develop which often are not 
accurate, but at one time were workarounds to fix problems. This is very 
much the case with mixing where there is a vast, unwritten literature, 
that is word of mouth rumors. Much of this is wrong. 

One of the most common is that one should reduce the mixing Greed if 
the problem is not converging. As discussed earlier, we are 
approximating by only including the first term in a Taylor series. If we use 
small steps we might avoid effects from the higher-order terms, but this 
does not have to be the case. Instead we have to limit the steps so that 
we remain in the region where the higher-order terms are small enough. 

The opposite also is not right – for good problems increasing the mixing Greed does not have to 
be good. There is an optimum, and the process outlined earlier attempts to find this. 

Another common one is that you should do 
some smearing over states. Again, this can 
work but it misses the real issue. If you 
have rapid variations in which states are 
occupied with changes in the potential, 
then there can be telegraph noise, that is 
rapid up/down changes as which states are 
occupied changes. Indeed, no computer program is perfect and there is almost always some 
numerical noise; computers (like people) are fallible.  

The Taylor series expansion implicitly assumes that the problem is smooth, not randomly jumping 
around; smearing can smooth over the rough edges (we all have rough edges). The trust region 
controls can somewhat handle this, although unfortunately most DFT codes do not have these 
and assume that a naive use of a truncated Taylor series is enough. 

A final common misconception goes under the name “sloshing”, 
where electron density can run from one part of the cell to 
another. Some papers even call this a “feature” of the codes. If 
you think about the Grand Canyon from earlier, if you go too far 
you will hit the walls, and may then bounce back; if you go too far 
you might even bounce out of the Grand Canyon and end up in 
the desert in Arizona. Chocolate cakes do not do well in deserts. 
This is really another example of too much Greed – please learn 
to control yourself. 
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17. Start the Music 

“All things truly wicked start from innocence”  

Ernest Hemingway 

Mixers, just like optimization codes and machine learning codes can be quite smart – once you 
give them a chance to learn from their mistakes. How to start a code on the path to learning is 
always tricky, and it is never going to be possible to code in an ideal answer without more 
information – which is of course a chicken and egg problem (which came first). 

Almost always what one does is start cautiously, then allow the program to get more aggressive 
as information is accumulated. Being too cautious will slow the code down, the question is how 
much risk is tolerable? This will depend upon the type of problem being investigated – an 
experienced user may be much more risk-tolerant and know what to do when chaos occurs. 

The Wien2k code makes a decent attempt to guess good parameters for the unpredicted step, 
but it can get it wrong. In cases where the residue is not a good descent direction, this can be 
bad. In addition, the code will attempt to partially correct the pseudo-charge in the first iteration, 
which can also be very bad in such cases. Then one has to start with a very small unpredicted 
step, e.g. 0.001 (echo .001 > .pratt) and avoid the correction in the first iteration (touch 
.NoPseudo).  

 

“ Success is not final, failure is not fatal: it is the courage to 
continue that counts” 

Winston Churchill 
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18. Some technical details 
For the sake of completeness, a few more technical details are included here, more of interest 
to coders in many cases. 

18.1 Scaling of Variables 

The most obvious approach to take is to use the variables that are most convenient for the DFT 
calculations, mainly the calculation of the potential, directly in the mixer. Beware, this is not the 
best choice! The “units” that matter in the earlier sections are dot products of the variables. 
These have to obey some rules: 

a) If we repeat the unit cell, for instance go to a 2x2 supercell, the relative contribution 
of different components has to remain the same, since nothing has really changed. 

b) For an isolated atom in a big cell where the outermost parts contain nothing (not even 
chocolate), add yet more outside vacuum cannot change anything. 

c) If we use symmetry to reduce the number of atoms, the different components should 
have the same relative contributions if we change the symmetry. 

This means that the densities have to be scaled such that they take account of degeneracy and 
also the volume over which each one occupies, such that the dot products scale as the density 
squared. 

18.2 Absolute versus Relative 

A relevant ambiguity is whether the trust radii and also the overall step Greed should be relative 
or absolute values. Because of how they are generated by looking at the previous step, the trust 
radii automatically behave as absolute numbers, with their radii reducing as the algorithm moves 
towards the fixed-point. The Greed for the Predicted step is a scaling factor, so it seems natural 
to use it as relative. (Other literature does this, but we might all be wrong in some cases.) For the 
Unpredicted step, and also the total step it seems best to average over the relative and absolute 
values. 

18.3 Sequential versus Parallel 

The method for constructing the matrices earlier used the current point as the origin, and 
referenced everything to it. In the optimization literature a different approach is used, where the 
analysis uses a sequential approach. In addition, instead of creating the Jacobian from all the 
steps, a sequence of updates are used to build it. The idea of this is that the oldest steps are less 
relevant than the current ones. In optimization there are ways to ensure that every step is going 
downhill, so we know that the more recent ones are better. However, this is less clear for fixed-
point problems – think about the meandering river case. 
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18.4 Different Algorithms 

There are a plethora of algorithms. With exact arithmetic (which is never possible), and for 
problems where the first-order Taylor series expansion is completely valid they are all the same. 
Many papers exist in the literature which claim that one is “better” than the others, but this 
almost certainly depends more upon what scaling has been used (or abused?) and other, un-
reported facts as well as the type of problems picked as tests. In addition, almost no other codes 
in the DFT literature appear to try and control the Greed from an ab-initio approach, similar to 
what is described here. 

The table below describes the various algorithms based upon what the T matrix is in the general 
form (repeating it for clarity): 

𝐻𝐻𝑘𝑘 = 𝑆𝑆𝑘𝑘 (𝑇𝑇𝑘𝑘𝑇𝑇𝑌𝑌𝑘𝑘)−1 𝑇𝑇𝑘𝑘 
𝑇𝑇   and 𝐵𝐵𝑘𝑘 = 𝑌𝑌𝑘𝑘 (𝑇𝑇𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘)−1 𝑇𝑇𝑘𝑘 

𝑇𝑇     (26) 

At least with Wien2k where all of these have been tested with just the density and orbital 
potential parameters, the MSR1 approach is better than the others in general. If the atoms are 
also “mixed”, the MSR1 is significantly better than others. Is this always true beyond DFT – 
unclear. 

Name T Matrix Centering Form Rescaling Notes 

Good Broyden S Sequential Overwriting None Rare 

Bad Broyden Y Sequential Overwriting None Rare 

DIIS Y Current Matrix None Common 

MSEC Y Current Matrix Diagonal Obsolete 

MSGB S Current Matrix Diagonal Noisy 

MSR1 Y+αS Current Matrix Diagonal Optimal? 

HYB1 Y+αS Current Matrix None Good 

HYB2 Y+αS Sequential Matrix Diagonal Good 

 

18.5 Regularization 

There are many inverses, some of which are well 
behaved, but others may not be. To avoid the inverses 
blowing up it is important to regularize. This damps or 
eliminates the small eigenvalues, which after inversion 
can have anomalously large effects. Remembering that 
there are always numerical issues, some of these small 
eigenvalues may be just noise. 
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For any matrix, the approach is to use a regularized Penrose-Moore form, which is the standard 
form: 

𝛿𝛿𝑎𝑎𝐼𝐼(𝑊𝑊) = (𝑊𝑊𝑇𝑇𝑊𝑊 + 𝛿𝛿𝛿𝛿)−1𝑊𝑊𝑇𝑇       (26) 

The value of 𝛿𝛿 is hard to be accurate about, or derive. A rational way is to scale it to the maximum 
eigenvalue of the matrix 𝑊𝑊. A slightly more robust method of doing the inversion is to use 
Singular Valued Decomposition, then apply an approximate inversion to the singular values, that 
is 

𝛾𝛾𝑖𝑖 = 𝛾𝛾𝑖𝑖/(𝛾𝛾𝑖𝑖2 + 𝜆𝜆2)        (27) 

18.6 Dual versus Inverse 

In the algorithms, a tricky question is how to construct inverses, since the matrices were built 
with only a limited number of histories so the inverses are not unique. (Non-unique matrices 
are a computational pain!) One way around this is to ignore the regularization, and use 

𝐵𝐵𝑘𝑘 = 𝑌𝑌𝑘𝑘 Reg(𝑆𝑆𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘)−1 𝑆𝑆𝑘𝑘 
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻𝑘𝑘 = 𝑆𝑆𝑘𝑘 Reg(𝑆𝑆𝑘𝑘𝑇𝑇𝑌𝑌𝑘𝑘)−1 𝑆𝑆𝑘𝑘 

𝑇𝑇     (26)   

Without the regularization these are true inverses, with it they are approximate. We have to 
regularize to avoid the chocolate cake exploding, so it seems to be more appropriate to call 
these “Duals”.  

18.7 Backtracking 

The exactly procedure for backtracking can only be reasonable; this is not something which is 
amenable to rigorous mathematics. The choice in Wien2k is: 

a) If the step goes up by more than 2.0, then perform a quadratic fit using the last point 
and the current one to estimate the best size of the step that should have been taken. 
Then move to it, but do not store the density and other information for the step.  

b) If the step goes up by more than 1.5, keep the information but go back to the last 
position and recalculate everything from the Jacobian to the Greeds. 

An additional feature to stop oscillations is to ensure that in the next step the trust regions and 
Greeds do not increase (they can decrease). This ensures that we have two reasonable values. 

18.8 Safety  

In an ideal world all that is needed is to control the total step size, 
assuming that we can correctly scale changes to the atomic positions and 
their forces to the density, and both to other terms such as orbital 
potentials. Unfortunately the best one can do is something close, which 
appears to be using atomic units for everything. The algorithm can still go 
nuts if one does not include reasonable safety traps: 
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a) That in any given iteration, none of the mixing parameters changes by an extravagant 
amount. Limiting them to the range 3/5 to 5/3 seems reasonable. 

b) Some hard limits, for instance not allowing atoms to move more than 0.1 au (0.05 
Angstroms) in any step. 

c) Reducing the trust region if there are obvious physical problems, for instance large 
changes in the potential or ghostbands. 

d) Using additional trusts, for instance on how much the density around each atom can 
change. Similar to the main mixing Greed these are dynamically controlled by the code 
using predictions. 

18.9 Pseudocharge 

In Wien2k and similar codes, the interstitial density is described by Fourier components, and the 
density inside the muffin tins around the atoms by radial functions involving spherical harmonics. 
There is an issue with this that can have an impact on the mixing. The Fourier components are 
not limited to just the region outside the muffin tins, the go everywhere; the parts inside the 
muffin tins are cancelled out when various parts are calculated, for instance the potentials. 

However, the mixer does not know that the density inside the muffin tins is not used. This density 
is called the pseudocharge, and plays a role in how the mixing behaves. (You cannot simply throw 
it away, as with a finite basis set this would lead to Gibbs oscillations – no free lunch.) When this 
charge is very large it can dominate the mixing, as reducing this part can be more important (for 
the total residue) than anything else. When the pseudocharge is converged, overall convergence 
is typically fast, but sometimes it takes many iterations for this to happen. A partial compensation 
is included in the first iteration, or if “.Pseudo” is present to help remove it, but it is not perfect. 

18.10 Bookkeeping 

Is a pain, but one of the nastiest parts of codes such as these. Indeed, there are more lines in the 
code to handle this than anything else! These range from simple ones such as recording the last 
positions and residues, to ones such as the mixing Greeds, trust radii and convergence testing 
metrics. Many of these are not so useful for the general user, but some are needed in the code, 
particularly for averaging to avoid anomalous jumps. 

18.11 Coding Philosophy: Hands Off 

When cake mixes came out in 1929 they sold, but by the 1950’s their 
popularity had decreased. It took Ernest Dichter to recognize that the 
mixes were too easy; the cooks did not feel emotionally invested enough 
if all it took was to add water. The answer – have them also add eggs. 
(They also tasted better that way.) 

A design fundamental of the mixer in Wien2k is that it should have as few parameters as possible. 
Currently the only ones are how rapidly to allow increases and decreases, the initial estimates 
for the different Greeds and hard limits. Everything is adjusted dynamically. 
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Similar to cooks, there is always a tendency for users to adjust the iterations – what else to do 
while it is running (except make chocolate cake)? There are some controls, but few are 
documented, quite deliberately. Indeed, if the user reduces the Mixing Greed in the main 
program this does not do what they think it does! All it really does is increase the number of 
trust region controls, and also reduce the speed at which parameters can improve. One has to 
give users something to play with, and ensure minimal harm. 
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User Guide Details: MIXER (adding and mixing of charge densities) 

In mixer the electron densities of core, semi-core, and valence states are added to yield 
the total new (output) density (in some calculations only one or two types will exist). 
Proper normalization of the densities is checked and enforced. Other terms such as 
orbital potentials and density matrices are also mixed. As it is well known, simply 
taking the new densities leads to instabilities in the iterative SCF process. Therefore it 
is necessary to stabilize the SCF cycle. Several mixing schemes are implemented, but 
we mention only: 

1. Straight mixing as originally proposed by Pratt (52) with a mixing greed Q  

2. A Multi-Secant mixing scheme contributed by L. Marks (see Marks and Luke 
2008), in which all the expansion coefficients of the density from several 
preceding iterations (usually 8-12) are utilized to calculate an optimal direction 
in each iteration. This version is by far superior to the other schemes making 
them quite obsolete. It is robust and stable (works nicely also for magnetic 
systems with 3d or 4f states at EF) and usually converges at least 30 % faster 
than the old BROYD scheme. 

3. Two new variants on the Multi-Secant method including a rank-one update (see 
Marks 2013, 2021) which appear to be faster and equally robust 

At the outset of a new calculation (for any changed computational parameter such as k-
mesh, matrix size, lattice constant etc.), any existing case.broydX files should be 
deleted (since the iterative history which they contain refers to a ``different`` 
incompatible calculation). 

If the file case.clmsum_old cannot be found by mixer, a ``PRATT-mixing`` with a 
mixing greed of 1.0 is done. 

Note: a case.clmval file must always be present, since the LM values and the K-vectors 
are read from this file. 

The total energy and the atomic forces are computed in mixer by reading 
the case.scf file and adding the various contributions computed in preceding steps of 
the last iteration. Therefore case.scf must not contain a certain ̀ `iteration-number'' more 
than once and the number of iterations in the scf file must not be greater than 999. 
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For LDA+U calculations case.dmatup/dn and for hybrid-DFT (switch -
eece) case.vorbup/dn files will be included in the mixing procedure. With the new 
mode MSR1a (or MSECa) atomic positions will also be mixed (effectively optimized). 
 
1 Execution 

The program mixer is executed by invoking the command: 
mixer mixer.def or x mixer [-eece] 

A spin-polarized case will be detected automatically by x due to the presence of a 
case.clmvalup file. For an example see fcc Ni (sec. 10.2) in the WIEN2k package. 
 
2 Dimensioning parameters 

The following parameters are collected in file param.inc, : 

NCOM number of LM terms in density 

NRAD number of radial mesh points 

NSYM order of point group 

Traptouch minimum acceptable distance between atoms in full optimization model 

 
3 Input 

Below a sample input (written automatically by lstart) is provided for TiO2 (rutile), 
one of the test cases provided with the WIEN2k package. 
------------------ top of file: case.inm -------------------- 
MSR1  0.d0  YES  (PRATT/MSEC1 background charge (+1 for additional e), NORM 
0.2              MIXING GREED 
1.0 1.0          Not used, retained for compatibility only 
999 8            nbroyd nuse 
------------------- bottom of file ------------------------ 

Interpretive comments on this file are as follows: 
line 1: 

(A5,*)  
switch, bgch, norm 
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switch MSR1 Recommended: A Rank-One Multisecant that is slightly faster than 
MSEC3 in most cases. For MSR1a see later. 

 MSEC3 Multi-Secant scheme (Marks and Luke 2008). This is similar to DIIS, with 
trust regions added. 

  MSEC4 Similar to MSEC3 (above), but mixes the higher LM values inside 
spheres by an adaptive PRATT scheme. This leads to a significant 
reduction of program size and file size (case.broyd*) for unit cells with 
many atoms and low symmetry (factor 10-50) with only slightly worse 
mixing performance. 

 MSR2 A variant of MSR1 which only mixes the L=0 values inside the spheres, 
similar to MSEC4 

  PRATT Pratt’s scheme with a fixed greed 

  PRAT0 

 

Pratt's scheme with a greed restrained by previous improvement, 
similar to MSEC3 

bgch   Background charge for charged cells (+1 for additional electron, -1 for core 
hole, if not neutralized by additional valence electron) 

norm YES Charge densities are normalized to sum of Z 

  NO Charge densities are not normalized 

line 2: 

free format  

Greed   Mixing Greed Q. Essential for PRAT0 and PRATT, less important for 
Multisecant methods. Q is automatically controlled by the program. 
Decreasing it turns on some more controls to reduce the aggressiveness. 
One should rarely reduce this below 0.05. 

line 3 (optional): 

(free format)  
f_pw, f_clm 

f_pw   Not used, retained for compatibility only. 

f_clm   Not used, retained for compatibility only. 

line 4 (optional): 
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(free format)  
nbroyd, nuse 

nbroyd   Not used, retained for compatibility only. 

nuse  For all the Multisecant Methods: Only nuse prior steps are used  (this value 
has some influence on the optimal convergence. Usually 6-10 seems 
reasonable and 8 is recommended). For MSR1a of large cells sometimes 16 
is better. 

Line 5 or more (optional), additional switches: 
 

For Hard Problems: 
STIFF Recommended if you run into severe convergence problems, this will 

probably solve them. However, improving your model (e.g. RKMAX, RMT, 
k-points) is more likely to help 

STIFFER A version of STIFF that does not increase Trust Radii unless there is an 
improvement 

ATLIM Turns on the atom movement limit in the default mode with only step size 
control 

TRAD X Reduces the maximum atom movement to X au from the default 0.1. For 
hard problems TRAD 2E-2 may be useful 

BLIM X Reduces the upper step bound X, for instance to 1.0 
 
Other, only for experts: 
FAST May be faster for well-conditioned problems 
PRATT Uses PRATT mode with the step size control of MSR1 
LAMBDA X  Fixes the regularization value to X, for instance 1D-4 
VERBOSE        Outputs additional information that may not be useful for most people 
LESS  Reduces the amount of information VERBOSE produces 
RESTART X  Restarts from a converged density with an initial GREED of X 
ELIN  Mixing of global linearization energy, can be useful for d or f electrons 
DIIS The DIIS (PULAY, ANDERSON) method, with are unscaled MSEC3. Not 

recommended. 
MSGB Multisecant Good Broyden, not recommended. 
MSEC3 The same as MSEC3 on the first line. (DIIS/PULAR/ANDERSON/MSGB also) 
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Control files – for expert fine control, use with care 
 
In all cases below values are changed for the next iteration only. The file is then 
deleted. 
 
.msec The existence of the file .msec forces the next step to use an unpredicted greed  

which is read from the file. The code deletes the file if it is present. It can be useful 
in the very first iteration, for instance to use a value of 0.005 since the initial 
density can be quite bad. Also, on some cases the algorithm can get trapped with 
small greed terms (e.g.  0.001), and this allows it to be reset higher. 

.Beta The existence of this file forces the next step to use the predicted greed in the file. 

.pratt  The existence of the file .pratt forces the next step to be a Pratt step, without a 
restart. If the file contains a number, this is the mixing greed used. The code 
deletes the file if it is present. It can be useful to have a small value such as 0.005 
or even 0.0025 for the very first iteration. 

.BLim  Changes the trust region to value in the file for the next iteration – do grep :TRUST 
case.scf 

.Climit Changes the charge trust region of single atoms to the value in the file for the next 
iteration – do grep :TRUST case.scf. This only works if STIFF is set. 

.CTOlimit Increases the charge trust region of all atoms to the value in the file for the next 
iteration – do grep :TRUST case.scf. This only works if STIFF is set. 

.PWlimit Changes the plane wave trust region to the value in the file for the next iteration 
– do grep :TRUST case.scf. This only works if STIFF is set. 

.ATlimit Changes the charge trust region for atoms movement to the value in the file for 
the next iteration – do grep :TRUST case.scf. This only works if ATLIM or STIFF is 
set. 

.Pseudo            Do a pseudo-charge correction in the next iteration. File is then deleted. 

.NoPseudo Do not do pseudo-charge correction in first iteration. File is then deleted. 

.push Increases all the trust radii and Greeds by 1.5 in the next iteration. File is deleted. 

.pull Reduces all the trust radii and Greeds by 1.5 in the next iteration. Files is deleted 

.fast Presence uses faster (less safe) controls for the next step only. 

.restart Restarts from the prior density, preserving the trust region radii and exploiting 
prior information about the GREED. 

.minstop Switches from atoms+density to just density convergence. 

.minstart Switches from just density to atoms+density convergence. 

.forcedmat Forces the density matrices to be those of a full Pratt step 

.forceorb Forces the orbital potential to be that of a full Pratt step 
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Output from the Mixer in Wien2k 

A number of informational values are output in the file case.scfm. A smaller set is output for a non spin-
polarized case than for a polarized case, and additional information is output when the atom positions 
are simultaneously being mixed. Some of these are only output if VERB is included in case.inm; some are 
skipped if LESS is included. Below is a brief list with a few notes on each. The most important ones are 
indicated in bold, some of which are output by the program Check_lapw. Below is a guide, which is not 
complete. 

:CINT   Core integrals for each atom, should be integers or very close. 

:RTO   Density at nucleus, used for Mössbauer Isomer shifts. 

:HFF Hyperfine Fields for each atom, used for Mössbauer Hyperfine fields and NMR 
Knight shifts (Contact term). 

:NT   New densities, i.e. 𝐹𝐹(𝜌𝜌𝑘𝑘) both in the interstitial (:NTO) and for each atom. 
 :OT   The same for the old density 𝜌𝜌𝑘𝑘. 
 :CT   The same for the mixed density 𝜌𝜌𝑘𝑘+1. 

:NPC   Pseudo charge in 𝐹𝐹(𝜌𝜌𝑘𝑘). All three of these values should be similar. 
:OPC   Pseudo-charge for the old density 𝜌𝜌𝑘𝑘. 
:CPC   Pseudo-charge for the mixed density 𝜌𝜌𝑘𝑘+1. 

:DT RMS difference for just the L=0 density in each sphere. The other L values can 
be large, and are not included here (they are in FULLRMS). 

:DIS A weighted sum of the :DT values above, used as an approximate convergence 
criterion. 

:PW Check The total number of plane waves checked if STIFF is in case.inm. 

:FULLRMS  L2 Metric overall atoms, the residue used in the code. More accurate than :DIS. 

:PLANE    Properly scaled plane wave density and residue, a guide that could be used. 

:CHARG   Properly scaled density inside the muffin tins and residue, a guide. 

Step History Values for the last steps used of key parameters: 
         Dmix  Mixing Greed before any Trust Radius.      

Dmixt  Mixing Greed after any Trust Radius applied, so often small than Dmix. 
Red  How much reduction there was in the step in terms of FULLRMS. 
Pred  The Predicted Reduction, if the Predicted Step was 100% correct.    
Step        The relative Trust region size for the step. 
Lambda     The value of λ for 𝑇𝑇𝑘𝑘 = 𝜆𝜆𝑆𝑆𝑘𝑘 + 𝑌𝑌𝑘𝑘. 
MagAbs     The absolute Trust Region size, that is the Step multiplies by the movement.     
Beta  The Predicted Greed. 
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Orbital rescaling Scaling of the orbital potential terms if they are mixed, including as a weight 
how many electrons there are in each state. 

Compression scl How much each history in 𝑇𝑇𝑘𝑘  has been multiplied after scaling the diagonal of 
𝑌𝑌𝑘𝑘𝑇𝑇𝑌𝑌𝑘𝑘. 

Decomposed Diagonal Values for the diagonal values for different parts of the residue, useful to check 
scaling. 

:PRED The Predicted Trusts for the current step. These are combined with the history. 

Eigenvalues Lists the eigenvalues of 𝑆𝑆𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘 , 𝑆𝑆𝑘𝑘𝑇𝑇𝑌𝑌𝑘𝑘 ,𝑌𝑌𝑘𝑘𝑇𝑇𝑌𝑌𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑘𝑘𝑇𝑇𝑇𝑇𝑘𝑘 . Ideally these should all be 
positive, and negative or complex values in 𝑆𝑆𝑘𝑘𝑇𝑇𝑌𝑌𝑘𝑘 are indicative of complex 
problems. 

Singular Values These are what is used to regularize 𝑇𝑇𝑘𝑘𝑇𝑇𝑇𝑇𝑘𝑘. The Projection is the multiplication 
by the current residue. For complex problems the Projection is larger for the 
smaller singular values, those with least confidence. 

:DLIM, BLIM With VERB, these indicate different stages of creating the Greed terms, see the 
code. 

:RANK The rank of both 𝑌𝑌𝑘𝑘𝑇𝑇𝑌𝑌𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑘𝑘𝑇𝑇𝑇𝑇𝑘𝑘. Ideally the rank should be similar to the 
number of values, indicating that all values of the history are contributing, for 
instance better than 80%. Often it is small, which indicates that there are 
equivalent history directions, and the mixing is complex. 

:TRUST Values for the Trust Radii, not all of which are used (depend upon the flags). 

Past History Usage How much of each prior value was used. 

:DIRM Information on the memory, the reduction of the last step, what was predicted 
and what is predicted for the next step. Ideally the reduction should be similar 
to the prediction. 

:DIRT The size of the total step, that of a Pratt step and the angle between them. 
Ideally this angle should be small, but any value 0-70 degrees is fine. Large 
angles around 90 degrees indicate a complex problem. Values larger than this 
indicate that the algorithm has reversed direction relative to the Pratt step – 
which can happen and is not a reason to panic. 

 :DIRD  The same for the orbital terms. 
 :DIRA  The same for movement of the atoms. 
 :DIRP  The same for the plane waves. 
 :DIRQ  The same for the density inside the muffin tins. 

:APOS   Movement for each atom, and estimate of how far it still has to go. 

:FRMS   RMS of forces & L1 sum, also the RMS & L1 of the movement and the largest. 
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:MIX The mixing used, with regularization, the Mixing Greed, what type of Trust 
Region Step was used and how large it was relative to a Pratt step. The term 
“Newton” means that no Trust Region was applied; LMStep means it was. The 
Trust region that limited the step is indicated. LMBack means that it went back 
to the last step and recalculated; Back means that it did a quadratic 
approximation for a bad last step. 

:MMT total spin magnetic moment in unit cell 

:MMI The difference between the integrated up and dn spin densities  inside the 
muffin tins. 

:NEC Total densities, NEC01 is from 𝐹𝐹(𝜌𝜌𝑘𝑘), NEC02 from 𝜌𝜌𝑘𝑘  and NEC03 from 𝜌𝜌𝑘𝑘+1. 

:PW Change Some diagnostics for how some of the plane wave components change, both 
those which have small (hkl) and large. 

:ENE Approximation for the energy using a Harris (aka Harris-Foulkes) functional. 

:FOR, :FCA, :FGL Forces in mRyd/au. 

:STRESS_GPa             Stress tensor in GPa. “partial” indicates incomplete tensor (for convergence 
check), “total” is the complete tensor. 
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