
CHAPTER 1

Introduction and Methods

With the renewed interest over the past decade in problems concerning atomic-scale struc-
ture due to the nanotechnology revolution, transmission electron microscopy (TEM) has become
an increasingly important materials characterization tool. Its strengths lie in its inherent ver-
satility combined with relatively small size and cost, and widespread availability. The standard
operating mode in the electron microscope is direct imaging, widely used in morphological stud-
ies, defect studies, and certain types of atomic scale investigations. By changing lens excitations
in the imaging system, the diffraction pattern of the illuminated region is displayed, providing
detailed structure and symmetry information with excellent signal to noise ratio.

Attachments are available to augment the spatial information with chemical information
through the use of X-ray detectors and electron energy loss spectrometers (EELS), and equip-
ment is also available for specialized studies, for example in-situ attachments for studying
environmental reactions, electron holography for investigating magnetic materials, and through-
focal series reconstruction and tomography which yield structure information to high spatial
resolution (Spence 2003). The simultaneous availability of different types of information has
made EM very important in many areas of chemistry, biology, and materials science. Elu-
cidation of several important structures such as carbon nanotubes, several superconducting
materials, quasicrystals, and many proteins were possible because of the instrument’s inherent
versatility. As the length scale of materials problems steadily decreases, atomic-scale structural
electron crystallography will be seeing more demand.

Catalysis is a particularly important area of application. Refinement of hydrocarbons is a
multi-billion dollar industry that ranges from the initial processing of crude oil to the green
catalysis of spent fuels. Not only does structural knowledge enable detailed understanding
of reaction characteristics, it opens the door for improvement of catalytic mechanisms at the
atomic scale, and later facilitates industrial protection of new catalyst structures by way of
patents. The latter is a very strong incentive to shift structure studies from large shared
facilities into the industrial laboratory, where characterization can occur rapidly and behind
closed doors, and ideally at reduced cost.

This Ph.D. thesis concerns the implementation and development of precession electron dif-
fraction (PED), a modification of the transmission electron diffraction mode (TED) intended
for atomic-scale characterization of bulk materials. PED has demonstrated great promise for
overcoming significant data quality limitations and represents a major step toward the real-
ization of rapid atomic structure characterization in the TEM. This work is divided into two
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parts: 1) general implementation of a high-performance precession system, and 2) application
of the PED system to model materials systems for the purpose of understanding the technique’s
limitations and to refine its capabilities. Three practical precession systems are provided in the
appendices to provide a guide for constructing and evaluating future PED systems. The goal of
this work is to demonstrate that this method can make bulk structural electron crystallography
reliable and fast, with the vision that PED may in the near future become a reliable, versatile
and ultimately routine tool for determining atomic structures.

1.1. The Electron Microscope in Crystallography

Historically, X-ray techniques have been at the forefront of structural crystallography ow-
ing to the development of probabilistic phasing algorithms in the 1950s, collectively called
direct methods (DM), that overcame the crystallographic phase problem (Hauptman 1991).
These techniques enabled recovery of the critical phase portion of the Fourier components that
describe the structure, enabling straightforward determination of structure models from dif-
fraction intensity measurements. While highly suitable for many types of materials studies,
evidenced by the vast number of atomic structures elucidated using X-ray radiation over the
past 50 years, high-resolution X-ray techniques have some disadvantages from the perspective
of nanomaterials characterization:

• Laboratory X-ray sources are not bright enough for studying very thin crystals, sur-
faces, and interfaces. To obtain scattered intensities with large dynamic range, a bright
source such as a synchrotron is necessary.

• The beam diameter from high brightness sources are on the order of 1 µm, and on
the order of 0.5 µm in specialized fine-probe laboratory instruments (an exception is
the use of Fresnel zone plates that can obtain 100 nm probes in synchrotrons (Suzuki
et al. 2005), however they are extremely rare due to cost). In particular:

– Single crystal dimensions generally must be on the order of the probe size. Het-
erogeneous materials cannot be studied unless crystallites are larger in size or can
be isolated.

– Nanocrystal studies require powder specimens or homogeneous polycrystals, which
generate ring patterns from simultaneous sampling of all orientations of the crys-
tal. Symmetry information is lost in ring patterns and must be acquired using
other techniques such as transmission electron diffraction (TED). Additionally,
because reflection number scales roughly with the cube of spatial frequency, large
cell structures will have overwhelming peak overlap.

– Peak resolution (line width) is limited by the width of the probe. Decreasing
the probe size can cause ring overlap in dense diffraction patterns from large cell
materials or superstructures.

• X-ray imaging optics with adequate resolution are not available; the only information
from experiments are diffraction intensities. Morphological and defect information is
thus not simultaneously available.
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• Being a shared resource, synchrotron-based research projects have strict time con-
straints and shared maintenance costs.

TEM has traditionally played a complementary role to X-ray methods in crystallography,
partly because image resolution was insufficient except in specialized high-energy instruments
and also because data quality from TED was limited by multiple scattering. Nevertheless,
the ability to form a fine probe and to simultaneously collect diffraction patterns are distinct
advantages. In recent years, the field has seen a huge leap in the imaging capabilities of high-
resolution imaging (HREM) and scanning modes (STEM) due to the introduction of aberration-
corrective optics allowing point resolutions of less than 1 Ångstrøm (Haider et al. 1998; Batson
et al. 2002; Haider et al. 1999; Nellist et al. 2004). Unfortunately, atomic resolution images are
beyond the reach of most researchers because aberration correctors are still extremely expensive;
the vast majority of TEMs are still limited by the resolution of the image-forming optics.

Electron diffraction is a complementary technique that is capable of extracting structural
information — albeit incomplete because phase is lost — to much higher resolution (sub-
picometer regime) than imaging techniques because it is virtually immune to the resolution-
limiting aberrations of the objective lens. It can often be combined with imaging to enhance
the resolution of HREM images through the phase extension technique. A probe size of under
25 nm is readily achieved on modern instruments, enabling precise study of very small particles,
individual crystallites within a heterogeneous matrix, and fine structures such as interfaces and
surfaces in the TEM. This resolves a major constraint posed by X-ray methods.

While the combination of imaging and diffraction tools is very powerful, a central theme
in this thesis will be rapid structural characterization. For raw speed, diffraction alone is
an ideal technique. Immunity to aberrations in the image-forming optics allows information
transfer to extremely high resolution (≈ 0.01Å), circumventing the need for careful alignments
or in the extreme case aberration-correcting optics. Because it is an averaging technique, it is
insensitive to instabilities such as instrument vibration, and the effect of non-periodic features
such as defects are diminished (this can be a disadvantage depending on the information sought).
Additionally, structural information is collected within highly localized features in the form of
diffraction spots or Kikuchi lines; consequently, low dose is possible because the signal to noise
ratio is high, minimizing radiation damage to the specimen. This is especially critical for
structures that damage easily such as open-framework structures and biological molecules.

Electron diffraction has seen limited use as a standalone structural crystallography technique
due to problems of data quality arising from multiple scattering, discussed later in section 1.3.
This is rapidly changing, as methods are now available (section 1.4) to improve the quality of
the data or take advantage of cases where data are kinematical or near-kinematical for effective
use with DM. As will be seen in the next section, DM is very robust provided that data quality
is sufficient.
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1.2. Direct Methods

A structure projection in two dimensions can be represented by a two-dimensional function
f(r), where r = xa+yb. Diffraction experiments yield information about this function through
the Fourier transform relationships:

(1.1) f(r) =
∫ ∞

−∞
F (k)e2πik.rdk

(1.2) F (k) =
∫ ∞

−∞
f(r)e−2πik.rdr,

where k = ha∗ + kb∗ and a∗ and b∗ are unit vectors in reciprocal space. It should be noted
that this is a crystallographic structure projection so a and b are direct lattice vectors, and
additionally f(r) is a potential since in electron diffraction the incident beam interacts with the
electrostatic potential. The Fourier transform of a periodic structure, F (k), comprises discrete
harmonic components (structure factors) that are described by an amplitude term |F (g)| and
complex phase term eiφg , where g is a reflection vector in reciprocal space. Assuming for
the moment that dynamical multiple scattering can be ignored, the intensities measured in a
diffraction pattern are related to the structure factor amplitude by I(g) = |F (g)|2, and the
phases are lost. If phases were available, Fourier inversion via equation 1.1 would generate the
structure f(r). This is known as the phase problem of crystallography, and recovery of the
phases is the central concept of direct methods.

Refinement procedures are very successful at pinpointing the structure to high accuracy
given that the model structure from which the refinement is based is already close to the
true structure (e.g. deviating by less than ≈ 0.2 Å) (Marks et al. 1998). The difficulty lies
in the fact that, unless the set of initial models considered for refinement contains a close
approximation to the true structure, the true structure will (almost without exception) never
be found. The primary challenge in structure determination is therefore the generation of a
small set of potential structures from which a refinement can be based, and which includes
the true structure. It is of relevance to note that the phases are more important than the
absolute values of the moduli that are measured. That is, the component providing the key
spatial information in a structure is the phase. This is advantageous, since the problem is rather
forgiving from a probabilistic standpoint: the intensities can vary by a large amount but as long
as the recovered phases are close to true values the structure is still inherently recognizable,
and even the phases can deviate by a small amount without losing interpretability (figure 1.1).

In simple terms, direct methods make use of a priori information to constrain the phases
of measured reflections. DM codes exploit this information to converge rapidly to a small set
of possible solutions, which usually contains the true solution provided that the intensity data
are of sufficient quality. Some of the common constraints used are:
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Figure 1.1. Demonstration of amplitude and phase errors in perbromo-
phthalocyanine. The bottom row shows amplitude errors (a modified R1 - see
eqn 1.17) and the top shows phase errors (standard deviations, columns give
comparable R-factor), both increasing to the right. Amplitude errors were gen-
erated using noise in steps of 8% of the strongest beam amplitude. Reproduced
from Marks and Sinkler (2003).

(1) Atomicity: Scattering originates from atoms and hence the solution should have atomic
features; regions of peak-like charge densities correspond approximately to isolated
atom charge densities.

(2) Cell density: Assuming the data has ample resolution (≈ 1 Å), most of the charge
density in the unit cell is zero, representing the space between the atoms.

(3) Positivity: Charge density in a real crystal is always positive.
(4) Localization: If solving a structure in three dimensions, atoms will only be displaced

from bulk positions in a narrow region at the surface.

Two major families of algorithms are currently used: 1) approaches based upon probability
relationships existing between amplitude and phase, and 2) approaches using iterative mathe-
matical projections. Probabilistic approaches were pioneered in the 1950s and have been very
popular in X-ray crystallography, while projection methods are a more general case that have
proven to be versatile and robust.
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1.2.1. Probabilistic Direct Methods

The structure factor is defined in terms of the unit cell contents as:

(1.3) F (g) =
N∑

i=1

fie
2πig.ri ,

where N is the number of atoms in the unit cell and fi is the scattering factor for the ith atom
in the unit cell. It is convenient in direct methods to normalize the structure factors to the
largest value the amplitude can take on as defined by the unit cell contents, resulting in unitary
structure factors defined by,

(1.4) U(g) =
N∑

i=1

fi/
N∑

j=1

fj

 e2πig.ri =
N∑

i=1

nie
2πig.ri ,

where ni is the unitary scattering factor. Many direct methods flavors make use of a more
complicated normalization, denoted Eg, that generates similar results to the relationships de-
rived below. To obtain E’s, the structure factor is simply divided by the sum of the scattering
factors.

Harker and Kasper were the first to show that structure factor amplitudes could give in-
formation about structure factor phases (Harker and Kasper 1948). Using Cauchy’s inequality,
they proved that for a centrosymmetric crystal (one with an inversion center), all structure
factors are forced to be real and phase determination becomes a sign determination problem
according to the relationship:

(1.5) U2(g) ≤ 1
2

[1 + U(2g)] .

If U2(g) > 1
2 then U(2g) ≥ 0, or in other words the sign of reflection U(2g) is positive regardless

of the value of |U(2g)|. This inequality opened the field of direct methods.
The primary breakthrough in direct methods was the development of the triplet formulation

which allows phase determination of a given reflection by two others that are related statistically.
This is used in the majority of direct methods algorithms. The earliest form of this is the Sayre
equation, derived from Fourier theory using a simple convolution:

(1.6) Fg =
θg
V

∑
h

FhFg−h,

where θg is the ratio of the atomic form factor to the squared atomic form factor and V

is the unit cell volume (Sayre 1952) (subscripts will be used as a shorthand to indicate the
quantity corresponds to the given reflection denoted by the subscript). This relationship takes
advantage of atomicity: if f(r) is squared then atomic features become more sharply defined



7

but the positions remain the same and accordingly the phases for the structure factors are the
same. Rewriting this we get,

(1.7) |Fg|eiφg =
θg
V

∑
h

|FhFg−h|ei(φh+φg−h),

hence,

(1.8) φg ≈ φh + φg−h.

Rearranging gives the triplet relation for the phases:

(1.9) φ−g + φh + φg−h ≈ 2nπ,

where n is an integer. The relationship is illustrated by the Argand diagram in figure 1.2 for
a five-term summation for the right hand side of equation 1.7. If the magnitude |Fg| of reflection
g is large and |Fh| and |Fg−h| are also large for a particular value h = h′, the sum becomes
dominated by the h′ term. The vector sums must match, and even though the phases for smaller
terms may deviate, the phase of the component Fh′F(g−h′) approximates that of reflection
h. The probability distribution was derived by Cochran (Cochran 1955) demonstrating that
equation 1.9 is statistically sound and that for strong reflections — which contribute strongly
to structural features — it becomes distinctly peaked at 2nπ phase difference.

Practical application of the triplet relation within direct methods begins by defining the
phases for a small subset of the reflections in the intensity data set (called the basis set).
These are preferably strong reflections for which the true phases may or may not be known; if
unknown, random phases are usually given. By propagating triplet relationships in a process
called phase extension, estimates of the phases of the remaining reflections can be determined.
The phases are probabilistic, hence even if the starting phases are correct, the extended phases
may not be correct though usually they are indeed correct or close. Additionally, the phase-
extended solution must necessarily be self-consistent, e.g. for a given reflection of unknown
phase, multiple reflection vector pairs can define its phase so it may receive conflicting phase
assignments. In such a case it is necessary to eliminate discrepancies by modifying some of the
starting phases. The key to finding probable starting structures is to rapidly search through
solutions to find the ones that are self-consistent for all the measured reflections. A figure
of merit (FOM) is calculated to measure the correctness of the potential solutions, and the
solutions can be ranked based according to their FOMs. The solution with the lowest FOM is
not necessarily the true solution, however the correct solution will necessarily have a low FOM.

1.2.2. Feasible Sets

Alternate methods based upon iterative projection methods were developed for analogous prob-
lems concerning information recovery in mathematics and signal processing. The fundamental
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Figure 1.2. Argand diagram illustrating Sayre’s triplet relationship (equation
1.9). For strong amplitudes |Fg|, |Fh′ |, and |Fg−h′ |, the phase sum is approxi-
mately 2nπ.

idea is to group possible solutions into a feasible set and rapidly determine their overlap (po-
tential solutions) through the use of projection operators. A set is a general term describing a
group of entities that satisfies certain conditions and constraints. In the context of structural
crystallography, two sets are of relevance: 1) the set S1 of structure factors |U exp

g |eiφg that
have been constrained by the experiment; and 2) the set S2 that satisfies atomistic constraints,
itself comprising the overlap of independent sets defined by the a priori constraints listed in
the previous section. These sets are depicted graphically in fig 1.3. The projection operator is
employed within an iterative sequence, and is described by the projection direction, for example,

(1.10) (Ug)n+1 = P2P1(Ug)n.

In relation 1.10, P1 is the projection from set S1 to S2 and P2 is the projection from set S2

back to S1.
An important property of a set is convexity: a set is convex if it contains all points on a line

connecting any two of its members. A strong convergence is observed if both sets are convex
(Youla 1987). Unfortunately, the set S1 constrained by experimental amplitudes exclusively is
not convex (whereas the related set where phases are known, excluding moduli, is convex), so
a strong convergence is not guaranteed. However, for the general case of non-convex sets it was
shown that the iteration can at worst only stagnate (Levi and Stark 1984).

The problem space is uniquely defined by the constraints imposed upon the sets being
explored. Depending upon the way these constraints are defined, three possible outcomes are
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Figure 1.3. Graphical representation of iterative projection onto sets described
by equation 1.10. S1 is the set of structure factors constrained by the observed
experimental intensities |U exp

g |eiφg and S2 is the set of structure factors that
satisfies the a priori constraints. The magnitude of Pn represents the calculated
figure of merit (FOM); rapid convergence toward a feasible solution accompanies
minimization of the FOM.

possible (see figure 1.4). In an ideal case, a uniquely defined solution (figure 1.4(a)) is recovered
that satisfies all constraints within the sets. This is almost never the case, and typically there
is an intersection of sets or no intersection (figures 1.4(b) and (c), respectively). In the case
where there is overlap, there may be a large number of potential solutions (Combettes 1996)
and additional constraints can be imposed — for example a uniqueness constraint to filter out
redundant “like” solutions — to reduce the number of feasible solutions. In the third case,
where constraints are too strict, no overlap occurs and the projection algorithm attempts to
decrease the distance between sets, in other words it will minimize the figure of merit as best it
can. An example is the case where measured amplitudes deviate from kinematical too strongly,
giving solutions that do not make chemical sense (e.g. the potential map indicates atoms that
are too close). In defining the problem, the constraints are ideally balanced to minimize the
number of potential solutions without overly constraining the feasible sets. A consequence of
having a non-convex set is that all three cases can be simultaneously satisfied. More than one
local minimum is available, and a feasible set of discontinuous solutions can be generated, i.e.
multiple solution families with different defining features.

The various flavors of direct methods can be interpreted from the projection standpoint
through the identification of their projection operators and constraints. Classical direct meth-
ods can be interpreted as the iterative procedure incorporating 1) projection of the phases
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Figure 1.4. Three possible outcomes of the solution search between sets S1

and S2 using iterative projection. Case a), where a single unique solution is
clearly defined, is rare. Case b) demonstrates considerable overlap of sets, a
consequence of loose constraints where many solutions satisfy both constraint
sets. c) shows a case where there is no overlap between sets. The algorithm will
seek the solutions that minimize the distance between the sets.

using probabilistic relationships (triplets, quartets, etc.), and 2) correction of the moduli. The
iterative procedure used in the feasible sets ’98 (fs98) code written at Northwestern University
is shown in figure 1.2.2, and uses the projection operators:

(1.11) P1ur =

{
0 if ur < 0
ur ln ur

〈ur〉 if ur > 0

(1.12) P2Ug = |U exp
g |e2πiφg .

P1 is a peak-sharpening projector similar to Sayre’s squaring operation which ensures atom-like
features and only positive charge density. P2 re-constrains the solution in reciprocal space by
correcting the moduli to known (experimental) values.

The projection cycle is monitored by a recovery criterion, the figure of merit (FOM), which
serves as a metric for the algorithm’s effectiveness and can optionally be used to determine when
the algorithm should cease. Several types of FOMs are available with varying characteristics
designed to minimize certain types of error; the one used in fs98 is as follows:

(1.13) FOM =
∑
g 6=0

|(Ug)n+1 − α(Ug)n|
(Ug)n+1

,

where α is chosen to minimize equation 1.13. In the case of a true solution with no measurement
error, equation 1.13 will be zero.
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Figure 1.5. Flowchart of the feasible sets ’98 (fs98) direct methods algorithm.

1.2.3. Genetic Algorithms

Due to the non-convexity of the amplitude constraint, the intersection of the crystallographic
constraints could exist at any number of local minima. It is therefore important to probe all
of these minima, as the true solution could be contained within any one of these intersections.
Genetic algorithms are a powerful method to perform global search of the possible sets with
low information overhead (Landree et al. 1997). They act similarly to the population growth
of biological systems with environmental pressures, where offspring with enhanced adaptations
are propagated with each successive generation.

In genetic algorithms, the starting phases of a basis set are defined as randomly chosen
binary strings. The basis set is chosen based upon statistical relationships within the data set;
in simple terms, strong reflections that define other beams are chosen with regard to potential
phase relationships. This is done to avoid redundant solutions and to ensure convergence.
About 10-20% of the total number of beams in the data set is included in the basis set. The
binary string describing phases of the basis set is referred to as a chromosome. For example, each
beam’s phase — which in the centrosymmetric case can either be 0◦ 180◦ — is represented by a
single bit: 1 or 0. For each iterative projection the population is evaluated according to equation
1.13. After the individuals in an entire generation have been subjected to iterative projection
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and evaluated by equation 1.13, a new generation is born through a process called cross-sharing.
Here, the chromosome is broken up into schemata (short contiguous binary segments) which
are randomly re-combined with schemata from other populations that have favorable FOM to
generate new chromosomes to be used in the next iteration. The children generated with each
iteration will generally have improved collective FOM due to natural selection.

To enhance the search capabilities, random mutations are introduced where a single bit or
multiple bits within a chromosome are flipped. This causes new areas of solution space to be
probed that would otherwise be missed due to non-convexity. Another enhancement, intended
to prevent too rapid of convergence, is to sort schemata according to their similarity. This
encourages parallel evolution of different ‘species’, effectively probing multiple niche solutions
within the solution space. The algorithm with these enhancements tends to converge rapidly;
in fs98 the algorithm is set to terminate by default after 36 populations.

In practical application, direct methods are very successful provided that the quality of
intensities is sufficient. In the next section, it will be seen that in electron diffraction they
usually are not (except in special cases) due to multiple scattering.

1.3. The Problem of Multiple Scattering

In the simplest interpretation, the radiation incident upon the specimen is scattered by the
atomic planes of the crystal when the Bragg condition,

(1.14) λ = 2d sin θB,

is satisfied (d is the distance between scattering planes and θB is the Bragg angle). The
ideal case for DM is when intensity in a diffracted beam is a result of single scattering events
from the scattering planes (kinematical diffraction). For X-rays, the probability of scattering is
already low, therefore the probability for multiple scattering is vanishingly small. The measured
intensity is then related to structure factor according to the relationship,

(1.15) Iexp
g = |Fg|2.

Electrons, however, interact more strongly with matter than X-rays by 3-4 orders of magnitude.
The intensities of scattered beams deviate from kinematical and equation 1.15 no longer holds.
This phenomenon, termed dynamical diffraction, is demonstrated in figure 1.6 for two beams.
The probability for rediffraction is a function of specimen thickness, therefore as the electrons
propagate through the specimen, intensity is continually exchanged between diffracted and
transmitted beams. At the exit surface the diffracted beam intensity no longer represents the
scattering strength as indicated by the structure factor.

In the configurations of high symmetry that are of most interest in crystallographic studies,
many beams are simultaneously excited. Within a zone axis pattern (ZAP), a large number
rediffraction paths are simultaneously available and the intensities in the pattern become dis-
torted — more severely if strong scatterers (heavy elements) are present or if the specimen is
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Figure 1.6. Diffracted beams that meet the Bragg condition (equation 1.14)
are necessarily in the same condition to be rediffracted back into the incident
beam. Demonstrated here for two beams, this is the origin of dynamical diffrac-
tion.

thick. Images are likewise affected since the same beams contribute to the image: contrast
oscillations of image features with increasing thickness prevent direct interpretation of HREM
images except for suitably thin specimens. The quality of crystallographic information avail-
able in TEM is thus limited by the cell contents and their arrangement and by the specimen
thickness. It is relevant for PED to note that much less intensity exchange occurs when only
a few beams are simultaneously excited. If only two beams are strongly excited at a time, the
least distortion of intensities occurs.

1.3.1. Multislice

In structure studies involving high resolution imaging, image simulation is used to account for
the effects of multiple scattering. First, an image is simulated based upon a structure model,
then it is checked to see how closely it resembles the experimental image, the structure is
refined, and the process repeated. Like direct methods, many flavors of image simulation have
been developed. The type employed in the analyses in the following chapters is the multislice
approach.

Multislice describes the interaction of three components:

• ψ: The electron wave;
• P : The propagator of the electron wave in space;
• Q: A thin slice of the specimen projected onto a plane (phase grating).
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The crystal is divided intoN thin slices through which the electron wave propagates sequentially,
where slice thickness ×N is the specimen thickness. The multislice algorithm is described by
the following general formula (Cowley and Moodie 1957):

(1.16) ψn+1 = [ψn ·Qn]⊗ Pn→n+1.

The symbol ⊗ is the convolution operator. In a multislice routine, the incident beam is scattered
by the phase grating (also called the transmission function, eikφ) and the intensities of the
diffracted beams are tracked. The potential within a slice n is iteratively projected using the
propagator onto the next slice n+ 1 and the process is repeated until N total slices have been
processed. The exit wavefunction is then collected and either used to form a diffraction pattern
in reciprocal space or is convolved with the microscope function (contrast transfer function, any
apertures, and environmental effects) to form a simulated image.

Multislice simulations are employed in some structure refinement procedures such as NUMIS
and MSLS (Jansen et al. 1998). The starting structure determined by direct methods is used to
calculate simulated patterns that are compared to the experimental intensities. A FOM is used
to evaluate the goodness of fit, usually given as some error metric such as χ2 or an R-factor as
follows:

(1.17) R1 =

∑
g

∣∣∣F exp
g − F calc

g

∣∣∣∑
g

∣∣F exp
g

∣∣ ;

(1.18) R2 =

∑
g

∣∣∣Iexp
g − Icalc

g

∣∣∣∑
g

∣∣Iexp
g

∣∣ .

During refinement, atom positions are relaxed iteratively and the simulation is repeated to
minimize the error metric. The minimum R1 is usually greater than 20% for electron diffraction
data whereas it is usually less than 5-10% for X-ray data (compared to kinematical simulation),
and sometimes less than 1% for some inorganics (e.g., Khattak et al. (1975); Newsam (1988);
Yu et al. (1995)). The R2 metric is typically larger than R1 and can in some cases better
describe how well structure factor ratios are preserved within the data set.

Here it is relevant to mention the effect of specimen thickness variation on electron dif-
fraction data. In image-based structure solution techniques, it is likely that the simulated
image will match some band of the experimental image if the simulated thickness is within
the range of experimental thickness. While diffraction has much better signal-to-noise than
HREM, the experimental data does not often match simulation closely regardless of whether
average experimental thickness is consistent with simulated thickness. This is because thickness
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and orientation variation affects all of the beams in the pattern; therefore one cannot readily
differentiate the contributions to intensity from different thicknesses.

1.3.2. Dynamical Direct Methods

Simulation always requires an initial model. It is the role of direct methods to provide this.
However, dynamical effects will affect the reliability of direct methods, especially for bulk
structures, hence a priori knowledge about how dynamical data affects direct methods solutions
is needed for proper interpretation of direct methods results. The structure map that is restored
for moderately thin specimens (< 20 nm) closely resembles the modulus of the Babinet |1−ψ(r)|,
where ψ(r) is the complex exit wave (Sinkler et al. 1998a). Electron diffraction data can
be expected to give structure maps with atom-like features for specimens up to moderate
thickness, however they will be distorted with increasing thickness. It is therefore necessary to
be conservative with their interpretation (Marks et al. 1998):

(1) Not all peaks will be in correct places, and often will be off by more than 10 pm;
(2) Charge density will not be correct;
(3) There may be too few or too many peaks.

Here, it is important to mention a special dynamical case of scattering dominated by a single
atom type (Sinkler and Marks 1999a; Marks and Sinkler 2003). In the case of structures that
project well, a channeling model is applicable that describes the shape of periodic oscillation
of the electron wavefunction as it propagates down individual atomic columns. Mathemati-
cally, the shape of each atom in projection can be described by some two-dimensional complex
function a(r). By convolution, this yields the reciprocal space function,

(1.19) Ψ(k) = A(k)
∑

i

e2πik.ri ,

where i represents the set of atom positions in projection and A(k) is the complex atom shape
function in reciprocal space. Hence,

(1.20) I(k) = |A(k)|2
∣∣∣∣∣∑

l

e2πik.ri

∣∣∣∣∣
2

The amplitude term A(k) can be replaced by any real function B(k) that generates a real
feature in the object plane. For example, one could use a function B(k) = S(k)|A(k)|, where
S(k) = ±1. In this case, we have an effective atom in real space described by the real symmetric
function b(r). The important point is that there need not be a direct relationship between the
true complex wavefunction and the recovered pseudoatom; the features simply have to be similar
(e.g., satisfying an atomicity constraint). This is the origin of the correspondence between the
modulus of the Babinet and direct methods solutions: there needs not be a direct correlation
between the two. In the special case where channeling conditions give rise to atom features
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of the same type (excluding other types), such as for the thickness range of 5-20nm in GITO
crystals, all positions of that type will be recovered by Direct Methods (Sinkler et al. 1998b).

It is clear that kinematical diffraction is a poor model for absolute electron diffraction
intensities, yet, as seen above and in other cases, classical direct methods applied to manifestly
dynamical data often works, although results are hard to predict (Sinkler et al. 1998a; Weirich
2004; Nicolopoulos et al. 1995; Dorset et al. 1997). For example, a light atom column may be
recovered while a column of heavy atoms may be missing form the solutions. This is rather
counterintuitive, however, the link between the two can be found by examining the statistics of
dynamical scattering within the 1s channeling model (Hu et al. 2000; Chukhovskii et al. 2001).
The important points are given below:

(1) Phases of +g and −g reflections obey, statistically, the relationship

(1.21) φg + φ−g ≈ 2nπ + α,

where α is a phase deviation constant. It dependent upon the type of atoms present
and the thickness, and not upon g. When relationship 1.21 holds, the data represents
an effective kinematical approximation to the true structure. This behavior is shown
in figure 1.7(a)-(b) for thin crystals of C32Cl16CuN8, reproduced from Hu et al. (2000).

(2) The triplet sum phases obey a similar relationship:

(1.22) φ−g + φ−g + φg−h ≈ 2nπ + β,

where β is a deviation constant similar to α, also dependent upon the cell contents
and specimen thickness. Figure 1.7(c)-(d) demonstrates this relationship, reproduced
from Chukhovskii et al. (2001).

(3) Friedel’s law — that intensity of symmetry equivalents must be equal — is not stricly
obeyed in dynamical scattering, however, it is obeyed statistically (figure 1.8).

The key result is that the structure must project well and the thickness must be sufficiently
small for direct methods to work on dynamical data. In the case of psuedo-kinematical dy-
namical data, α in the Friedel pair relationship and β within the triplet sum is close to zero,
approximating the kinematical statistics. On the other hand, in dynamical direct methods, α
and β can span any value between 0 and 2nπ. A caveat is that multiple atom features may
cause the value of β to lose statistical significance, e.g., the statistics begin to break down when
many types of atom features are present (poor projection) or when thickness is too large for
direct methods to recover from the intensities phases that follow equation 1.22.

While dynamical direct methods has been seen to be quite effective in model systems, in
addition to small thickness usually some prior knowledge of the unit cell is required to predict
favorable conditions (such as emphasis of like atom types due to channeling). Because ab
initio direct methods on TED data sets generally break down severely with increasing crystal
thickness, it is difficult when working with novel systems to avoid pitfalls where not all atoms are
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Figure 1.7. Probability histogram of the product FgF−g for (a) centrosymmet-
ric and (b) noncentrosymmetric (random) models of C32Cl16CuN8 crystal. (c)
and (d) are similar centrosymmetric and noncentrosymmetric histograms for the
triple product FgFhF−g−h for the same crystal. All structure factors calculated
by multislice, t = 5.264 nm. Taken from Hu et al. (2000) and Chukhovskii et al.
(2001).

simultaneously expressed, or where atom positions deviate too much to be usable as starting
positions. For this reason, direct electron crystallography of novel complex bulk structures
using conventional ED is still relatively impractical unless extremely thin and flat specimens
are available. In spite of this, a small number of cases exist where data quality can be improved
through clever means, of which PED is one form.

1.4. Approaches for Pseudo-Kinematical Electron Diffraction

As seen in section 1.2, if intensities are kinematical the structure factor phases are re-
coverable and the true structure easily retrieved. The method has been shown to be robust:
intensities can vary by 10% or 20% in many situations and the phasing algorithm can still re-
cover enough accurate phases to reconstruct the true structure or something very close. Apart
from very simple structures such as silicon or magnesium oxide that are trivially solved by
direct methods, there are a number of cases where electron diffraction data can yield starting
structures suitable for refinement (Marks and Sinkler 2003). The most obvious case is that of
thin specimens, however thickness must generally be on the order of 5-10 nm, or even less if the
specimen contains heavy elements. This is difficult to achieve practically for many materials,
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Figure 1.8. Normalized dynamical moduli of Fg plotted against F−g for the
noncentrosymmetric structure in figure 1.7(b) and (d). Friedel’s law is obeyed
statistically for this thickness (5.264nm).

and is also difficult for crushed (powder) specimens unless a definite cleavage plane for the zone
of interest is present.

The logical extension of thin specimens is the case of surfaces, for which the Marks research
group has considerable expertise. Special measures must be taken during the experiment, be-
cause a) substrate bulk spots are much stronger than surface spots and b) bulk spots necessarily
overlap some surface spots in epitaxial superstructures and usually overlap for surface recon-
structions, meaning in either case there are holes in the intensity data. The latter is addressed
by an intensity prediction algorithm: rather than forcing unknown intensities to zero, therefore
applying an incorrect constraint, an approach is taken that maximizes the entropy of the inten-
sity summed over the real space map, in essence interpolating unknown reflections (Marks et al.
1998). Taking advantage of highly elongated reciprocal lattice rods arising from the Fourier
transform along the surface normal, the measurement of surface reflections is made by tilting
the substrate off the zone axis to damp multiple scattering by the bulk and to increase signal
of surface reflections. The intensities measured by this technique are very close to kinematical
and it is fairly straightforward to recover a good structure map.

A different class of approaches assumes deviation from kinematical. Instead of seeking
kinematical data, it exploits the fact that the statistical relationships contained within the data
set that code for phases (e.g., equation 1.6) may be preserved as long as relationships between
the intensity values are preserved (Marks and Sinkler 2003). This is called intensity mapping
and requires that dynamical intensity relationships be consistent with kinematical:
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Ig > Ih iff |Fg| > |Fh|.(1.23)

This interpretation is applicable to texture and powder patterns which provide an inten-
sity averaging effect. The scattering from powder specimens has been described by Blackman
(Blackman 1939):

(1.24)
Idyn
g

Ikin
g

=
1
Ag

∫ Ag

0
J0(2x)dx,

where Ag is an integration limit proportional to kinematical structure factor Fg and crystal
thickness t. The ratio of any two reflections within a powder data set is thus given by:

(1.25)
Idyn
g

Idyn
h

=
Ikin
g Fh

∫ Ag

0
J0(2x)dx

Ikin
h Fg

∫ Ah

0
J0(2x)dx

.

The limits of equation 1.25 have interesting consequences. In the case of small Ag and Ah, the
thickness and/or structure factor are small. The integral scales directly with Ag for small A,
and equation 1.25 reduces to:

(1.26)
Idyn
g

Idyn
h

=
Ikin
g

Ikin
h

.

In the alternate case where A’s are large, both integrals go to 1/2, and

(1.27)
Idyn
g

Idyn
h

=
F kin

g

F kin
h

.

In the worst case corresponding to the first two zeros of the Bessel function where Ag ≈ 1.2
and Ah ≈ 2.75 (see figure 1.9),

(1.28)
Idyn
g

Idyn
h

≈ 0.454
Fg

Fh
≈ 1.

The order is still preserved, consistent with equation 1.23, implying that the statistical relation-
ships generated by this ordering will also be preserved. This has been supported in experimental
work by Vainshtein and also by Dorset (Vainshtein 1964; Vainshtein et al. 1992; Dorset 1995).
The Blackman formula will be revisited in significant detail in chapter 4.
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Figure 1.9. Plot of the J0(2A) and its integral. Values for the first local
maximum and minimum are indicated.

1.4.1. The Precession Technique

Intensities in lamellar texture patterns and powder patterns demonstrate a clear relationship
with structure factor as seen in equation 1.24, and the role of thickness has been characterized
relatively simply. These intensities represent a statistical integration of off-axis conditions where
dynamical coupling between many beams is minimized. In the case of texture patterns, a limited
window of off-axis conditions is sampled whereas for powder patterns, all off-axis conditions
are sampled. In large-angle convergent beam electron diffraction (CBED) studies, the same
effect has been noted for high order Laue zone (HOLZ) reflections (Vincent et al. 1984; Vincent
and Bird 1986). In the condition that the convergence angle is increased to the radius of the
first order Laue zone (FOLZ), the high order reflections become filled with bright excess lines
that map the Bragg condition for those reflections. The intensities of the lines were found to be
two-beam in character and became kinematic in small crystals, fitting the Blackman description
(equation 1.24).

Integration of k-line segments is difficult from a measurement standpoint. The precession
electron diffraction (PED) mode stemmed from this work, devised as a method to facilitate
easier measurement of the HOLZ reflections (Vincent and Midgley 1994). The unforeseen
advantage, however, was that not only did precession integrate HOLZ reflections, the rest of
the zone axis pattern became available for measurement with similar expected improvements
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in data quality. Because it was devised with both data quality and measurement simplicity in
mind, it is especially promising as a method for obtaining psuedo-kinematical datasets.

In the experimental configuration for electron beam precession, the incident illumination
(can be convergent or parallel) is tilted off zone to large angle φ — typically 25-50 mrad
corresponding to a reciprocal resolution on the order of an inverse Ångstrøm at 200 kV —
and precessed in a serial manner about the optic axis forming an effective hollow cone of
illumination upon the specimen (figure 1.10). The diffracted intensities, which constitute an off-
zone diffraction experiment for each individual tilt, are de-scanned in a complementary manner
to the tilt scan signal restoring the spots to their default zone axis pattern locations. This
results in an effective integration of all tilts within the hollow illumination cone, i.e., around
teh edge of the cone. The PED pattern is thus an interpretable ZAP containing integrated
intensities from off-zone conditions that are by nature less dynamical because fewer beams are
simultaneously excited: strongly excited beams have little opportunity to exchange intensity
with others (except for the transmitted).

This geometry yields several very interesting features:

• The pattern may be indexed as a conventional diffraction pattern while the intensities
have actually been gathered from off-zone reflection conditions.

• Inelastic dynamical effects such as Kikuchi lines and intensity variations in CBED
spots are reduced by averaging over incident beam directions.

• Since the beam is entering the sample from an off-axis direction, much of the dynam-
ical scattering that is particularly strong at the exact Bragg condition (or zone axis
channeling condition) is avoided.

• Many more FOLZ reflections are excited, under more kinematical conditions, by the
Ewald sphere allowing the acquisition of an increased number of intensities for use in
structure solution techniques.

• HOLZ reflections are illuminated, yielding expanded 3-dimensional data sets provided
that spots from separate Laue zones do not overlap.

Figures 1.11(a)-(b) demonstrate these characteristics in the diffraction pattern from a thick
magnesium orthovanadate (Mg3V2O8) crystal. The precession pattern was captured in selected
area precession mode on the Hitachi UHV H-9000 modified for precession (Appendix B). A very
moderate precession angle (≈ 5 mrad) was used to form the pattern in 1.11(b). The extension
by precession of the HOLZ ring into an annulus of width ≈ 10 mrad is clearly seen, as well
as blending of inelastic dynamical effects into a radially diffuse background. This dynamical
background suppression can improve intensity measurements by considerably simplifying the
problem of background subtraction.

The improved quality of the precession data over that of conventional ED has been demon-
strated experimentally (Vincent and Midgley 1994; Own et al. 2004), and a small number of
structures have been solved via the technique, some a priori (Gjønnes et al. 1998a; Gemmi
et al. 2003; Own and Marks 2005b), and others by a combination of simulation and/or correc-
tion using forward calculations (Vincent and Midgley 1994; Gjønnes et al. 1998b). Additionally,
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Figure 1.10. The schematic diagram of precession electron diffraction (PED).
The beam is tilted off zone by angle φ using the beam tilt coils and serially
precessed through an angle θ = 2π. A complementary de-tilt is provided below
the specimen by de-scan coils to restore the zone axis pattern.

precession has been used to derive Debye-Waller temperature factors from monatomic speci-
mens using Wilson plots with good accuracy (Midgley et al. 1998). Some of the capabilities
demonstrated by the technique are listed below:

(1) Pseudo-kinematical intensities are available under some experimental conditions as
will be seen below;

(2) 3-dimensional datasets can be acquired under appropriate conditions from a single
zone axis pattern. Low electron energy or large cell dimension in the optic axis are
necessary, and Laue zone overlap must be avoided (see section 2.1);

(3) Decreased intensity oscillation with thickness is observed (also occurs with thickness
averaging);
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(4) Greater tolerance to orientational errors, and specimens do not have to be perfectly
on-zone to obtain symmetric patterns;

(5) Consistency of intensity values among different projections allows more accurate merg-
ing of multiple 2D projections into 3D datasets;

(6) Enhancement of fine detail in the solution of a large structure over that of conventional
TED (Gemmi et al. 2003);

(7) If some structure factors are known, precession can be used to gain crystal thickness
information with reasonable accuracy (within 10-15 nm).

1.4.2. Past Studies using PED

While promising, a priori structure determination of unknown or partially-known phases using
PED has met with varied success, primarily because a rigorous understanding of errors has
not been established. The technique was originally devised to complement CBED techniques,
augmenting known structure factors measured through other means. From the standpoint of
being a standalone technique, it is understood that precession data are distorted by dynamical
effects necessitating careful treatment of data (Own et al. 2004), however the approaches toward
data treatment have not been fully consistent in structure studies thus far. It has been suggested
that thin specimens are preferred in order to circumvent the dynamical effects, though it was
not known how thin. Nevertheless, to be a robust technique precession must be able to reliably
handle unknown specimens exhibiting a variety of scattering strengths and physical geometries.

A correction factor has been presented in the literature in various forms to treat the nonlin-
earities at larger crystal thickness (Gjønnes 1997). It comprises two parts, a geometry part that
corrects for integration geometry effects (Lorentz portion), and a two-beam part that corrects for
thickness-dependent dynamical effects (Blackman portion). Starting from the Lorentz-modified
Blackman formula

(1.29) Iexp
g ∝ Ag(

1−
(

g
2R0

)) ∫ Ag

0
J0(x)dx,

where R0 is the radius of the zeroth order Laue zone (ZOLZ), the approximate kinematical
intensity can be derived from the experimental intensity Iexp

g using the correction term:

(1.30) Ikin
g ∝ Icorr

g =

(1−
(

g
2R0

))
Ag∫ Ag

0
J0(x)dx

 Iexp
g ,

applicable for convergent beam PED. The original form (Vincent and Midgley (1994), not
shown) was refined to improve the Lorentz portion, and a new form was also derived to augment
the convergent illumination version with a parallel illumination form (Gjønnes 1997). A detailed
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analysis of correction factors and their validity will be given in chapter 4. Note that the
argument of the integrand in equations 1.29 and 1.30 is different from the Blackman formula
integrand (equation 1.24). The value of Ag used — critical for calculating accurate correction
factors — is not clearly defined in the literature. This discrepancy will also be addressed in
chapter 4.

The correction factor refined by Gjønnes for parallel illumination was used in an a priori
investigation of Ti2P. The structure was investigated by combining several 2D projections into
a 3D dataset and inverting using SIR97 DM software (Gemmi et al. 2003). The assumption
was made that intensities were proportional to structure factor in the limit of large thickness,
hence intensities were corrected only for precession geometry (not two-beam effects) before
merging the projections, and corrected intensities were used with direct methods rather than
amplitudes. The three precession datasets were found to merge much better than selected
area electron diffraction (SAED) projections (R1,2 = 13% and R1,3 = 22%; subscripts denote
the experimental datasets being compared), facilitated in part because severe streaking effects
arising due to disorder were eliminated in the precession data. The precession solution had a
higher final R-value (36%) than the solution from SAED (27.3%), however the structure maps
from precession localized additional peaks that were suppressed in SAED, helping to explain
why the superstructure arises.

The refined correction in equation 1.30 was also used in an elaborate a priori investigation
of a thick crystal (AlmFe, with nominal thickness 150 nm) that involved correction of dynamical
intensities starting from a small accurate set of starting structure factors (Gjønnes et al. 1998b;
Cheng et al. 1996). Careful CBED measurements and simulation were required to extract a
starting set of (h00) and (hk0) systematic rows. The thickness of the crystal was evaluated
by comparing experimental precession intensities to simulated precession intensities generated
using equation 1.29. The specimen was reported to be very thick, at about 150nm.

The raw data was then scaled by the Lorentz-corrected two-beam intensity relationships
(equations 1.25 and 1.29) using the known structure factors to acquire new ’effective’ structure
factors (U eff

g ). The two-beam portion of the corrections were simplified based upon the assump-
tion that thickness averaging damps intensity oscillations for large Ag, resulting in an average
value centered around the integral (see figure 1.9). This allowed a closed-form calculation using
an exponentially-damped sinc function instead of requiring integration of the Bessel function
J0. These effective structure factors represent less accurate but nevertheless quasi-kinematic
amplitudes that augment the known (h00) and (hk0) structure factors, completing the dataset.

Phase extension using triplets starting from the high confidence reflections ((h00) and (hh0)
rows) revealed inconsistencies in signs for some strong reflections, and Bethe potentials (Bethe
1928) were used to correct for 3-beam interaction effects of 330, 530, and 860 beams that
defined phases for many beams in the dataset. This resulted in four structure possibilities
that were analyzed individually using dynamical n-beam Bloch wave calculations based upon
Bethe-corrected structure factors respective to each possible set. The best match showed a
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moderately successful correlation of intensities with the uncorrected experimental amplitudes
(R1 ≈ 32%), and R2 was slightly higher at about 38%.

Solution was possible because accurate structure factors were available for strong beams,
allowing separate treatment of errant beams in an n-beam refinement (to first order) beyond
the expected two-beam case. Bloch wave simulation was required to distinguish which of the
corrected structure factors were satisfactory, and confirmed that precession intensities are still
subject to strong dynamical multi-beam coupling, at least for very thick specimens. While this
study shows promise that structure solution with thick specimens is possible using precession,
the fundamental problem is that considerable information must already be known about the
structure in order to solve it. The above study represents a classic example of a bootstrap ap-
proach to structure solution via electron diffraction, which is both time and resource-consuming
— not practically rapid or accurate enough to be competitive with X-ray methods on a wider
scale.

A parallel effort on the same material system was undertaken by J. Gjønnes et al. (1998a)
using precession intensities corrected only with the Lorentz factor (no two-beam correction).
A merged data set was created from eight projections, and intensities with known phases from
energy-filtered CBED measurements (Cheng et al. 1996) were added to augment it. Linear
scaling of intensities during the merge yielded excessive error, therefore a non-linear least-
squares procedure was used. The errors were still quite large, with a standard error of 36% for
13 reflections common to four datasets, therefore the data merge was noted by the authors as
the most uncertain step in the study. Multiple 3D codes were used to phase the dataset — a
simple Fourier synthesis, MICE, and QTAN — and a chemically reasonable structure model
was obtained. Refinement using SHELXL97 showed a poor fit with the corrected experimental
intensities (R1 = 42%), however the shifts to the refined positions were not large (< 25 pm).
Large deviations from experimental structure factors were found in the refinement of the hk0
reflections, indicating that non-systematic dynamical scattering was indeed present.

Comparing this study to K. Gjønnes et al. (1998b), both studies found similar structure
results for the [001] projection. The hk0 structure factors with full correction (two-beam and
Lorentz) matched the high-confidence CBED structure factors more closely than the structure
factors with only Lorentz correction. Seeing as the merged dataset quality was somewhat
uncertain, the authors attributed much of the success of the latter study (the 3D study) to the
forgiving nature of statistical direct methods. The specimen was estimated to be very thick
(≈ 100 nm), and dynamical effects were considered to be the major source of error in the
study. It will be seen in chapter 3 that in addition to specimen thickness (and variability),
precession cone semi-angle φ is a key variable in the reduction of dynamical effects in the data.
Unfortunately, neither study reported this experimental parameter in detail (Berg et al. (1998)
reported φ in the range of 16-43 mrad); it is likely that thickness variability combined with
inconsistent precession angle were the source of the inconsistency between projections.

The essential requirement for PED is that its intensities must demonstrate systematic be-
havior following equation 1.23. Some indication of the errors being systematic and slowly



27

varying has been implied in literature results; for example, Gjønnes et al. (1998b) implies in-
sensitivity of the correction factor to thickness variation, and the present theory indicates that
the results should be pseudo-kinematical owing to the many similarities with powder and tex-
ture intensities. These postulates require validation. The next chapter concerns development
and implementation of a new generation of high performance precession system on which to
conduct precession studies, and in the following chapters PED is investigated in detail with the
goal of discovering systematic behaviors within measured intensities. It will be seen that the
behaviors indeed satisfy the intensity mapping constraint in several cases and are predictable.


