
CHAPTER 4

Lorentz Correction Factors

In the last chapter, it was demonstrated that electron diffraction amplitudes extracted from
PED patterns with large precession angle φ can be used with direct methods to generate very
good starting structure maps. The only processing necessary is high-pass filtering of low-index
reflections. Multislice simulations showed that — for a much larger range of experimental
thicknesses than conventional diffraction — PED data has low enough error such that it is
sufficient for use with direct methods without modification. However, the simulations also
showed that this is not the case for large thicknesses (> 50 nm), and a correction of the
intensities would be required when the crystal is thick.

Precession electron diffraction is intended for finding initial starting structures from un-
known materials, therefore in practice usually very little a priori information about the struc-
ture will be known when first investigating a novel material. The thickness is another piece
of information that is almost always missing. Any practical correction factor must therefore
be based upon a simple model that is highly tolerant of error within the input parameters. In
other words, what is sought is a well-conditioned model.

While the structure of a novel material is not known, useful information is known about
the characteristics of the PED experiment. First, the microscopist knows the geometry of the
incident intensity, as well as where the major errors in the scattered intensities lie. Additionally,
it may be possible to tell during the experiment whether the specimen spans a large range of
thicknesses and/or is uniformly very thick using morphological clues (such as edge effects),
thickness fringes, or the presence of diffuse scattering and/or Kikuchi lines. Finally, it is known
that precession decreases dynamical coupling such that systematic paths are suppressed and, at
any given time, usually only one beam is strongly excited. The simplest model that describes
this is a model involving only two beams: the incident and a scattered beam.

In this chapter, the correction factors based upon two-beam approximations will be inves-
tigated in detail to understand how they work and when it is appropriate to apply them. The
results will also give some new insight into how PED itself works. Some of the contents will be
a more accurate reworking of the analysis previously done by Gjønnes (1997) and Vincent and
Midgley (1994). First, an exact geometrical model will be established that can be evaluated
numerically. This will serve as a reference for comparison with the Gjønnes correction factors.
It will initially take the form of a simple kinematical correction and then will be expanded to
include dynamical two-beam effects. The distinction between the kinematical geometry portion
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(Lorentz) and the dynamical portion will be discussed, then they will be compared to their ana-
logues within the Gjønnes correction factors. Lastly, a comparison of these models to multislice
simulation will be given, with the goal of finding the limits of where each model is applicable
to real data.

The corrections based upon two-beam dynamical theory, while simple, require that the
structure factors already be known. The term forward calculation will be used to describe this,
meaning that correction requires the structure factors be known which — if they are previously
known — negates the need for calculating the correction factors in the first place. Nevertheless,
the investigations of the particular corrections described in this chapter help to elucidate the
nature of PED and represent a much simpler model with which to describe the physics of
precession than the calculation-intensive full dynamical multislice. Additionally, the tolerance
for input error is investigated.

4.1. Derivation of Correction Factors

The similarities of PED to powder diffraction were recognized early on by Vincent and
Midgley (1994), who proposed the first correction factor for PED in the first paper on PED.
This was based upon a two-beam dynamical model intended for correcting powder diffraction
intensities (Blackman 1939). This correction factor was revised by Gjønnes (1997) to better
describe the geometrical effects and a number of variations of this factor have been used in
the literature (Vincent and Midgley 1994; Gjønnes et al. 1998b,a; Midgley et al. 1998; Gemmi
et al. 2003). The version of the Gjønnes correction factor intended for parallel illumination
(analagous to the convergent form of the Gjønnes factor in equation 1.30) is

(4.1) Ikin
g ∝ Icorr

g =

g

√
1−

(
g

2R0

)
Ag∫ Ag

0
J0(x)dx

 Iexp
g ,

where g is the reflection vector and Ag = 2πtUg

k (as defined in Gjønnes et al. (1998a)). In the
definition of Ag, t is the specimen thickness in Ångströms, Ug is the structure factor, and k is
the wavevector magnitude of the incident radiation. Equation 4.1 represents two corrections: 1)
a pre-factor to correct for geometry (Lorentz portion) and 2) a two-beam dynamical correction
(Blackman portion).

There are two problems with equation 4.1. First note that the value of Ag, which must be
defined absolutely, is critical for calculating the correct value of the integrated intensity. As
pointed out in section 1.4.2, the argument of the integrand in equation 4.1 is different from that
used in the Blackman formula (equation 1.24) by a factor of two, altering the periodicity of the
Bessel function J0. The forms of Ag used in Gjønnes (1997) and Gjønnes et al. (1998b) had
conflicting definitions and, furthermore, the structure factors (Ug) that were used to define Ag

had not been clearly defined. Without knowledge of the pre-factor constants, the correctness
of Ag in these studies is not certain. The second problem is that an assumption has been
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made that the geometry effects can be separated from the dynamical scattering effects. The
conditions for this approximation to hold were not specified in the derivation of the correction
factor (Gjønnes 1997).

In this section, the correction will be re-derived using kinematical and two-beam electron
diffraction theory. The re-derivation is more exact than the previous models and will be used to
explore the limits of their approximation. For completeness, the original derivation by Blackman
(1939) is included at the end of this section in section 4.1.3. The reader is referred to Gjønnes
(1997) for the derivation of the Lorentz portion in equation 4.1.

4.1.1. Kinematical Precession

Recall from section 2.1 that the intensity measured in precession represents a finite integration
of the scattered intensity. The relevant geometry, shown previously as figure 2.1, is reproduced
here as figure 4.1. The intensity scattered by the crystal is the true intensity Fg

2 multiplied
by some function dependent upon specimen dimensions. Intensity is scattered when this shape
function — which manifests in reciprocal space as a rod shape (relrod) — is intercepted by
the Ewald sphere. The true intensity can also be recovered by dividing the measured intensity
by the value of the shape function at the interception point, described by excitation error sg.
Similarly, the true intensity can be recovered from the measured integrated intensity from PED
by dividing by the integrated shape function, in other words

(4.2) |Fg|2 ∝ Icorr
g = C(g, t, φ)Iexp

g ,

where Cg is inversely proportional to the precession integral of the shape function of the scat-
tered intensity.

In this derivation, we seek to evaluate the integral of the scattered intensity over excitation
error that occurs during the precession:

(4.3) Iprec
g =

∫
Ig(sg)dsg.

Equation 4.3 is more conveniently treated as an integration over the precession variable θ

representing the circuit traced by the Laue circle, given by

(4.4) Iprec
g =

∫ 2π

0
I(θ)dθ.

The change of variables can be made starting from the equation of the Ewald sphere:

(4.5) (x− kx)2 + y2 + (z − kz)2 = k2,
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Figure 4.1. Reciprocal space geometry in (a) x− y plane and (b) x− z plane.
The beam precesses about the z-axis maintaining constant φ. In (b), the ZOLZ
(bold dashed circle) precesses about the z-axis.

where k = 1/λ, and kx and kz represent the deviation of the Ewald sphere origin in x and
z, respectively, due to precession. For a reflection g located at (x, y) = (|g| cos θ, |g| sin θ), the
Cartesian variables can be converted to functions of θ starting with the substitution
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(4.6) (g cos θ − kx)2 + (g sin θ)2 + (z − kz)2 = k2.

Simplifying using geometric identities, substituting sg for z, and utilizing |kx|2 + |kz|2 = |k|2,
this reduces to

(4.7) g2 − 2kxg cos θ − 2kzsg = 0,

where s2 is very small and has been eliminated from the previous equation. Since kz ≈ k, and
kx ≈ kφ in the limit of small φ, this is rearranged to get excitation error as a function of θ:

(4.8) sg(θ) =
g2 − 2kφg cos θ

2k
.

In kinematical scattering theory, the relrods representing the scattered intensity are de-
scribed by the inversion of the top hat function, therefore

(4.9) I(sg) =
1
ξ2g

sin2(πtsg)
sg2

.

The characteristic length ξg (also called the extinction distance) is a function of the experimental
variables structure factor Fg, unit cell volume Vc, electron wavelength λ, and Bragg angle θB

given by

(4.10) ξg =
πVc cos θB

λFg
.

The correction factor follows from equations 4.8 and 4.9, giving

(4.11)
∫ 2π

0
I(θ)dθ =

1
ξ2g

∫ 2π

0

sin2
{
πt
(

g2−2kφg cos θ
2k

)}
(

g2−2kφg cos θ
2k

)2 dθ ≡ 1
Ckin(g, t, φ)

.

In equation 4.11, the function within the integral over θ yields two peaks, illustrated in
figures 4.1(b) and 4.2. A relrod with g < 2R0 enters the zeroth Laue ‘bowl’ once and then exits
once as θ traverses 2π. The excitation error, describing the deviation from the Bragg scattering
condition, traces a cosine curve shifted in the z-axis due to the curvature of the Ewald sphere
and scaled depending upon distance of the reflection from the origin (equation 4.8). During
the precession, reflections close to the origin are sampled slowly with smaller excitation error,
so the shape of the modulus-squared of the sinc function along the θ-axis is widened and more
intensity is sampled per unit time from low-g reflections than from high-g reflections. The
higher-index reflections are more rapidly sampled, hence the squared sinc functions are narrow
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in the θ-axis. A large cone semi-angle φ increases the range of sg over which the integration
occurs, and in practice almost all reflections (except for very low indices) are rapidly sampled.

The model in equation 4.11 is useful as a starting correction, especially for thin specimens
and large precession angle. However, apart from geometry errors, dynamical effects become
prominent with increasing thickness, as evidenced in the lobstertail error plots in figure 3.9. In
order to deal with specimens that are thicker, a more sophisticated model is needed to account
for these effects.

4.1.2. Introduction of Two-beam Dynamical Excitation

When sg = 0, equation 4.9 reduces to I(sg) = (πt/ξg)2, meaning the diffracted intensity can
exceed the incident intensity when t > ξg/π. This is not physical, and a better model is realized
by considering the interaction of two beams propagating in a perfect crystal (Hirsch et al. 1965).
The solutions to the analytical equations that describe this two-beam interaction are a pair of
Bloch waves with relative magnitudes dependent upon the orientation of the crystal (e.g., the
linear combination of the two must always meet the boundary condition at the exit surface).

Figure 4.2. Intensity collected (Ig) and excitation error (sg) during the integra-
tion in the kinematical model, plotted against azimuthal angle for a low-index
reflection (|g| = 0.1R0, where R0 ≈ φk = 0.96 Å). Parallel illumination, with t
= 100 Å, φ = 24 mrad, 200 kV.
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The scattered intensity is governed by a new deviation parameter called the effective excitation
error, defined as

(4.12) seff
g =

√
s2
g −

1
ξ2g
.

The effective excitation error modifies equation 4.9 to account for dynamical exchange
between the transmitted and diffracted beams, giving

(4.13) I(sg) =
1
ξ2g

sin2(πtseff
g )

(seff
g )2

.

When ξg > t, the scattered intensity behaves like a conventional sinc function (with new
scaling and periodicity — see the solid curve in figure 4.3). However, when ξg < t, the scattered
intensity at zero excitation error begins to fall, creating a minimum between two nodes centered
about sg = 0 for some combinations of t and ξg. The most dramatic change occurs when the
argument of the sine function in the numerator of equation 4.13 becomes nπ, where n is an
integer (e.g., t

ξg
= n), at which point the scattered intensity at sg = 0 falls to zero (dashed

curve in figure 4.3).

Figure 4.3. Scattered intensity (Ig) v. excitation error (sg). Thickness t = 500.
For the solid curve ξg = 1500 Å and for the dashed curve ξg = 500 Å (intensities
not to scale). The binodal behavior occurs when t > ξg.
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The two-beam correction factor for precession thus comprises the integration along sg of
intensity profiles that vary with the extinction distance and specimen thickness (extinction
distance is in turn inversely proportional to the structure factor). It models the exchange of
intensity between the diffracted and transmitted beams and is valid when only one diffracted
beam is strongly excited. Substituting 4.12 in 4.11, the exact two-beam correction factor is
obtained:

(4.14)
∫ 2π

0
I(θ)dθ =

1
ξ2g

∫ 2π

0

sin2(πtseff
g )

(seff
g )2

dθ ≡ 1
C2beam(g, t, φ)

.

4.1.3. The Blackman Formula Revisited

In the early paper by Blackman (1939), the intensities of powder rings were elegantly described
by two-beam dynamical theory. Using the same approach as presented in the previous sec-
tion, the Blackman formula arises from a simple identity of the integrated scattered intensity.
Equation 4.13 can be rewritten in slightly different form:

(4.15) Ig = I0
sin2Ag

√
(W 2 + 1)

W 2 + 1
.

Here, I0 is the incident beam intensity, assumed to be 1 in equation 4.13, Ag = πt
ξg
∝ Fgt, and

W = sgξg. In powder and polycrystal diffraction, each constituent crystal is illuminated off
of the zone axis by some angle φ, causing a corresponding excitation error for a given g. A
simple change of variables gives the excitation error as a function of this angle: sg = 2kθφ. If
the crystal is rocked with angular speed ω = dφ

dt , the total reflected intensity becomes

Itot =
I0
ω

∫ +∞

−∞

sin2(Ag

√
(W 2 + 1))

W 2 + 1
dφ

∝ I0
2k2θω

Fg

Vc

∫ +∞

−∞

sin2(Ag

√
(W 2 + 1))

W 2 + 1
dW.(4.16)

The integration of the sinc function in equation 4.16 is equivalent to π times the integral
from 0 to Ag of the zeroth order Bessel function. This identity gives the basic form of the
Blackman formula:

Itot = Idyn
g =

πI0
2k2θω

Fg

Vc

∫ Ag

0
J0(2x)dx

∝ Ag

∫ Ag

0
J0(2x)dx.(4.17)

It is important to note that the structure factors used to calculate Ag must be known as
accurately as possible or the periodicity and amplitude of the integral will be altered. Figure 4.4
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shows equation 4.17 plotted for the three strongest reflections in GITO. The strongest reflection
has the greatest average intensity, and the average intensities decrease with decreasing structure
factor. Note that in some thickness ranges such as 350-500 Å, the intensity of the strongest
reflection drops below that of the next-strongest reflections.

The plots in figure 4.4 represent the Bessel integral for exact thickness values, however in
real specimens there is usually some thickness variation ∆t . The effect of thickness averaging
on equation 4.17 in PED has previously been pointed out by Gjønnes et al. (1998b). In this
model, ∆t will generate a range of oscillation periodicities; superposition of scattered intensity
from a range of thicknesses generates an effective curve that has reduced oscillation amplitude
and slightly decreased intensity. The behavior at small Ag, however, will remain essentially the
same. In other words, the integral scales linearly with Ag regardless of thickness variation for
small Ag, but for large Ag the oscillations are damped and converge more rapidly to their final

Figure 4.4. Equation 4.17 plotted for the three strongest reflections in GITO.
The oscillation periodicities are slightly different because the extinction distance
ξg varies between reflections. The extinction distances are 580 Å, 660 Å, and
780Åfor the 401̄, 003, and 206 reflections, respectively.
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value when ∆t 6= 0. This is advantageous because strong reflections will more likely maintain
kinematical phase relationships between each other when there is some variation in thickness
(recall equation 1.27).

4.2. Comparison between models

Five models of precession have now been discussed. To summarize, they are:

• Finite integration limits:
(1) Kinematical integral over sg (Lorentz portion);
(2) Dynamical (two-beam) integral over seff

g ;
• Gjønnes form:

(3) Lorentz portion (approximation of (1));
(4) Lorentz and Blackman combined (approximation of (2); the Blackman por-

tion has infinite integration limits);
• (5) Multislice (described in chapter 3).

Table 4.1 shows the different forms of the correction and some nomenclature by which to
refer to them in the following sections. The fact that the Blackman formula also represents
an integration of the two-beam condition is understood. However, for naming convenience,
correction (2) will be denoted C2beam while correction (4) will be denoted CBlackman.

The multislice model is exact and effectively describes the physical behavior of PED, as
demonstrated in section 3.2. Multislice will serve as the reference for comparing the approximate
models listed above. We begin with a general discussion of their relationships, looking at trends
from a theoretical standpoint. Later in this section, these relationships will be proven in practice
by comparing the effectiveness of the correction factors at linearizing the simulated datasets.

4.2.1. Expected Trends

The integration limits along sg are an important characteristic within the proposed models.
Assuming for the time being that the scattered intensity in precession is always either kine-
matical or two-beam in nature (not n-beam where n > 2), the corrections CGj and CBlackman

approximate the more exact corrections Ckin and C2beam only if the precession has integrated
nearly all of the scattered intensity. The conditions where this is satisfied are investigated
below.

Figure 4.5 shows the behavior of the integral of the squared sinc function as a function of
the integration limits. Most of the intensity is contained within the first period of the sinc
function, and 98% of the intensity is sampled by integrating 5 periods. Beyond 5 periods, the
integral converges toward unity more slowly, and 99% of the intensity is sampled only after
integrating 10 oscillation periods. Depending upon the detector sensitivity and the amount
of thickness averaging, experimental error is often within 3-5%, hence the integral can be
considered complete as long as 5-10 periods are sampled and the sampled periods include the
region near sg = 0. The latter constraint arises because the correction factors are inversely
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related to the integrated intensity; if only a tail of the squared sinc function is sampled, the
integrated intensity is very small and both experimental measurement and calculation become
unreliable due to, respectively, insufficient signal-to-noise ratio and numerical error.

This behavior is still true when two-beam dynamical effects are introduced. The binodal
curve that occurs when t > ξg exhibits the same behavior except the intensity within the tails
does not damp as rapidly as in the squared sinc function (see the dashed curve in figure 4.3).
The consequence is that a larger number of periods must be sampled for complete integration.
The Blackman integral is a bipolar integration, therefore in order to apply it to precession
data, all correction factors within the dataset must represent relatively complete integrations
over both positive and negative excitation error.

To understand where the approximation CBlackman breaks down, it must be noted where the
integration does not sufficiently sample the intensity scattered into the reciprocal lattice rods.
Figure 4.6(a) shows the limits of the excitation error in the PED experiment. The minimum
negative excitation error exceeds the maximum positive excitation error, and their ratio scales
roughly with g. For example, the most positive excitation error occurs at the center of the
Laue bowl when g = R0 (reflection g in 4.6(a)), giving sg = k(1 − cos 0.024) ≈ 0.012 Å−1 for
the experimental conditions of 200 kV and 24 mrad cone semi-angle (k is about 40 Å−1). The

Figure 4.5. The squared sinc function (a) and the integral of the sinc function
(b) plotted against excitation error for a crystal thickness of 500 Å. The integral
converges rapidly toward unity as indicated by the arrows: 98% of the intensity
is sampled when 5 oscillation periods are integrated, and 99% of the intensity is
sampled by 10 oscillation periods.
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most negative excitation error for reflection g is sg ≈ 0.035 Å−1. Typical extinction distances
for strong reflections are on the order of a few hundred Ångströms or greater, and crystal
thicknesses are normally greater than 50 Å, giving an oscillation periodicity of < 0.005 Å−1 for
the strongest reflections. Under these conditions, over a dozen periods of the shape function
will be integrated as illustrated in figure 4.6(b).

The worst-case scenario occurs when the sinc-like function describing the scattered intensity
has a large period in reciprocal space. This will occur when extinction distance (large structure
factor) and specimen thickness are small, both on the order of 50 Å. This is very rare because
the smallest ξg occurs for the strongest reflections, of which there are not many, and specimens

Figure 4.6. (a) The integration range ∆sg for reflection g located at x = R0.
Excitation error is positive in the −z direction. (b) The scattered intensity over
the range ∆s from (a) for a crystal with t = 200 Å and ξg = 250 Å.
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are usually more than 200 Å thick. Recall the earlier example where the integration limits
were -0.035 Å−1 and 0.012 Å−1 for a reflection at g = R0. For a material with t = 250 Å and
ξg = 60 Å, only about 7 oscillations will be integrated and the Gjønnes corrections will have
greater than 15% error. For GITO, which has a very large unit cell volume, and correspondingly
large extinction distance of 580 Å for its strongest reflection (index 401̄), the intensity will be
sufficiently integrated under most experimental conditions.

When g > 2R0, positive excitation error does not occur. Corrections CGj and CBlackman

break down beyond this point and are no longer applicable. However, the correction factors
with finite integration limits (Ckin and C2beam) will still be applicable slightly beyond 2R0

because the negative half of the sinc function is still integrable. Nevertheless, the correction
factor will soon blow up beyond 2R0 and will be much less practical than simply extending
the ZOLZ radius by increasing the cone angle φ (figure 4.7). In other words, the precession
angle should be chosen such that the largest g of interest in the diffraction pattern is smaller
than 2R0 by at least 0.25R0. Reflections with sufficient intensity to be measurable are typically
within about 1.5 Å−1, so φ = 20-25 mrad (at 200 kV) is the minimum acceptable angle for
PED studies where correction factors are applied.

Figure 4.7. The kinematical correction factor Ckin for crystal thicknesses be-
tween 100 Åand 600Å, for φ = 24 mrad. The correction factors behave nearly
identically (with scaling) for g < 1.8 Å−1, corresponding to about twice the
radius of the zeroth order Laue zone (2R0). Beyond 2R0, the correction factor
is inversely proportional to the area within the tails of the relrod where there is
very little scattered intensity, and the correction factor blows up.
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Exploring cone angle selection further, recall that the structurally important reflections
generally fall within the band g = 0.25-1.5 Å−1, so it is advantageous to have larger cone
angle to increase the positive limit of integration within this band (e.g., deepen the Laue
bowl). Furthermore, recall from chapter 3 that going off-zone reduces simultaneous excitation of
multiple strong reflections, thereby reducing amplitude errors in the PED dataset. Fortuitously,
the constraints necessary for good integration coincide with the reduction of dynamical effects:
large cone angle improves the correction factors by extending the integration limits along sg,
and additionally reduces multiple scattering effects such that two-beam theory is adhered to
better.

4.2.2. Comparison of Calculated Corrections Factors

The cases where the Gjønnes forms CGj and CBlackman deviate from the finite integration
corrections Ckin and C2beam will be illustrated first. Figure 4.8 shows C2beam and CBlackman

calculated for a number of thicknesses and tilt angles. Dynamical effects are reduced in thin
crystals, so C2beam and CBlackman (the full corrections) converge with the geometry-only correc-
tions Ckin and CGj , respectively, in the limit of small t (applicable in figures 4.8(a)-(c)). Figures
4.8(a)-(c) represent small thickness, where the agreement between C2beam and CBlackman models
is poorest. A number of conclusions can be drawn from the figures:

• Small thickness produces a large oscillation period in the relrods, meaning that the
integration along sg is incomplete for many reflections. Therefore for small t, CGj

represents a poor approximation to Ckin; in other words, CBlackman does not match
CGj (figures 4.8(a)-(c)).

• Small cone semi-angle φ combined with small t results in the worst agreement between
C2beam and CBlackman (figure 4.8(a)).

• Larger cone semi-angle improves the agreement between Ckin and CGj (figure 4.8(b)-
(c)) due to larger integration limits along sg.

• The dynamical effects are reduced at small t, therefore Lorentz geometry dominates the
correction factor. The tiny peaks on the CBlackman curve in figure 4.8(c) are dynamical
corrections.

• CBlackman converges with C2beam for larger thickness because periodicity in the relrod
is small. Dynamical effects are accentuated, therefore a large correction is necessary
for many reflections 4.8(d). For very large thickness, the dynamical correction is much
larger than the geometry background.

As seen in chapter 3, the small thickness regime is where a correction factor is not strictly
necessary; it is instead the large thicknesses (> 50 nm) where the correction factors are needed.
For crystals with large thickness, the shape function has much smaller periodicity, so the in-
tegration within finite limits converges toward the integration over all excitation error and
correction CBlackman is a good approximation to C2beam. This agreement is demonstrated in
figure 4.8(d): the whale-shaped background curve (Lorentz contribution) is consistent between
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the two corrections at 634 Å, and the peaks match to within a few percent. Note that the
corrections are plotted as curves to accentuate the peaking and the correction factors are not
really continuous: each peak represents a correction for a specific reflection.

At large thickness, dynamical effects naturally begin to dominate. This is clearly seen in
figure 4.8(d), where many reflections within the structure-defining regime 0.25-0.75 Å−1 have
large corrections above the background curve. The key observation is that the correction factor
selectively corrects reflections that have large error due to dynamical scattering. A second
major point is that at large thickness, where relrods have small oscillation period, the geometry
can indeed be separated from the thickness-dependent dynamical effects and the geometry can
be approximated in the limit of moderate-to-large thickness by CGj which is independent of
thickness. The net correction is reduced to the product between the Lorentz and Blackman
terms.

Figure 4.9 shows the trends in more detail using plots of C2beam for various thicknesses
(increasing horizontally) and cone angles (increasing down each column). The thicknesses are
large enough that CBlackman is a good approximation and will yield similar results for all plots
except the top left (φ = 10 mrad, t = 32 nm). Small cone angles yield incomplete integration of
scattered intensity and the errors become substantial beyond g = 2R0. The integration is fairly
complete with larger cone angle, evidenced by the decay of dynamical-type corrections (spikes)
at higher g within the plots. Large corrections are necessary for the reflections in the structure-
defining range of 0.25-1 Å−1. For very thick crystals (right-most column), dynamical effects
extend out to very high spatial frequencies in the diffraction pattern, and their corrections
extend to greater g correspondingly.

4.2.3. Application to Multislice Data Sets

The results from the previous analyses showed that CBlackman is a good approximation to the
exact two-beam correction factor C2beam in the thickness regime where a correction would be
necessary (> 10-20 nm). In ab initio structure studies, the structure factors necessary for
either correction are not available so the obvious tendency would be to apply a geometry-only
correction. This approach requires only two pieces of information — an estimate of thickness
and the cone angle — circumventing the need for forward calculation. Unfortunately, this
proves to be a rather poor approach at the larger thickness regimes where the correction factors
are needed. This seems counterintuitive, but the geometry correction is non-selective, so many
intensities that need a large correction do not get the boost and weaker reflections can become
too strong.

The kinematical Lorentz correction Ckin applied to simulated PED amplitudes is shown in
figure 4.10 for thickness of 16, 32, and 63 nm. Refer to figure 3.8 for the uncorrected intensities.
The amplitudes are slightly improved for 16 nm crystals, however there is no clear improvement
for the 32 nm and 63 nm specimens. In thin crystals, almost none of the reflections have two-
beam corrections. The weak reflections spread out along the z-axis for thick crystals because
the dynamical corrections for the coupled beams have been omitted. Because there is not much
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Figure 4.9. Tableau of correction factor plots for the GITO system calculated
for various cone semi-angles and specimen thickness. The constituent plots rep-
resent C2beam v. g. The plots in the 10 mrad row have a cutoff of g = 0.9 Å−1

because for small cone semi-angle the correction factor blows up at high spatial
frequencies.

correlation between precession geometry and the beam intensity, the strongly coupled beams
will receive insufficient correction under most circumstances.

This helps to explain why the R-factors were much worse in the AlmFe and Ti2P studies
using intensities corrected only for geometry (Gjønnes et al. 1998a; Gemmi et al. 2003) versus
the AlmFe study utilizing the full correction (Gjønnes et al. 1998b). The reported R1 values
for the structures found using CGj-corrected intensities were 42% and 36%, respectively, versus
32% for the structure found using CBlackman. The most uncertain step in the first two studies
was the merging of multiple projections. This is to be expected with the crystal thickness on the
order of 100 nm. The two-beam dynamical effects would be severe, and the reliability of scaling
for common reflections is doubtful. The preferred solution is to simply use thinner crystals
(e.g., fine probe near the specimen edge) and remove the reflections near the transmitted beam
instead of treating the intensities for precession geometry.
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Figure 4.10. Multislice amplitudes with correction factor Ckin applied.

If structure factors are known, as in the case of partially-solved structures or where some
structure factors have been obtained through other means such as CBED, then the C2beam

correction may be used. Figure 4.11 shows the application of the full corrections, some of which
were shown in figure 4.9, to correct multislice amplitudes from figure 3.8. The top two rows of
plots show that there is some divergence between C2beam and CBlackman at small precession cone
angle. This is less of a problem at large thickness, but in any case the error is not more than
10%. At larger cone semi-angles of 24 mrad and 75 mrad, C2beam and CBlackman are virtually
identical and only C2beam-corrected plots are shown for those cone semi-angles.

The corrections work very well for thicknesses in the regime of 48-100 nm for the GITO
structure. In this regime, the weak reflections still exhibit some residual offset, however the
intensity ordering is very good. The residual offset occurs because there is always a small
amount of multi-beam coupling around the ZOLZ ring and the stronger beams will contribute
some intensity to some of the weaker beams through short systematic paths. The strongest
beams will be weakened slightly as they couple with the weakest beams surrounding them,
giving rise to an apparent curvature in the amplitude reference plots. This effect is most
pronounced in the 50-75 nm thicknesses.

At very large thickness (> 90 nm), the corrected intensities exhibit a minor inflection. This
is a residual dynamical feature attributed to n-beam intensity exchange. The inflection is less
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pronounced for φ = 75 mrad, but occurs for a similar set of reflections (the strongest ones)
regardless of changing experimental conditions. The inflected reflections all have extinction
distance less than the specimen thickness and do not appear to lie in a specific band of g in the
structure-defining range of 0.25-0.75 Å−1.

The distribution of the reflections is shown expanded in figure 4.12 for the case of t = 127
mm, φ = 75 mrad, and the indices of the strong reflections are labeled. The spread at low
structure factor amplitude comprises weak reflections from the entire range, and reflections of
varying spatial frequency ranges are distributed throughout, clearly indicating that the cor-
rection factors are applicable to reflections at all spatial frequencies. The nonlinear behavior
evident in the corrected intensity shows that n-beam effects are still present, however the overall
behavior of the dataset is linear. The fact that the inflected strong reflections span a range of
g and do not seem to preferentially lie in a specific band of spatial frequencies indicates that
the primary errors are due to weak dynamical excitations between neighboring beams and are
not due to interaction between simultaneously-excited strong beams.

Figure 4.12. Detail plot of simulated intensities for t = 1268 Å corrected using
C2beam. The distribution of the intensities with g is indicated by symbol. Weak
intensities from the entire range of g contribute to the spread at low amplitude,
showing that dynamical effects are not strongly tied to spatial frequency (except
in the continually multiply-excited condition near the transmitted beam).
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An interesting exercise is to investigate the effect of error in the forward calculation. This
is a crude test for determining how well-conditioned the correction factor model is. Noisy
structure factors were generated using the algorithm

(4.18) Fnoi
g =

(
1 +

e

100
× (nrand ∗ 2− 1)

)
F kin

g ,

where e is the percent error and nrand is a random number between 0 and 1. The error
introduced is bipolar and independent of the structure factor, so it is not intended to model
dynamical effects. The R-factors for the structure factors with noise added are given in table 4.2.
Each dataset had a different noise profile to control for any serendipitous correction behavior.

The datasets corrected with a C2beam that has been calculated using the noisy structure
factors were then plotted against the true structure factor. Figure 4.13 shows the corrected
simulated datasets with largest noise profiles in the correction factors. R1 values have been
calculated for each set and are given in table 4.3. The R-factors of the corrected data shown in
that table are much lower than the error contained within the inputted data. The improvement
is, however, dependent upon the experimental conditions, which means that the geometry term
plays a substantial role here. It is important to note that while the approach yields low R-
factors, the plots in figure 4.13 indicate that the correction factors do not strongly preserve
intensity relationships. This is to be expected, since there is no way that equation 4.14 can
predict the correct structure factor. However, the moderately well-conditioned character of
this algorithm does make way for a potential iterative correction factor scheme, wherein a
poor starting set of structure factors might be refined into more accurate structure factors by
applying a priori constraints and then refining based upon a statistical two-beam dynamical
model.

We conclude this section by mentioning that the mechanism behind some of the residual
dynamical behaviors are not manifestly obvious. For example, the R-factor is lower for larger
thickness (also observed qualitatively in figure 4.11). This might be explained by the fact that
the integral over excitation error converges to a constant in the limit of large t. Under this
condition, the correction factor behavior is dominated by the prefactor 1/ξg. In other words,
equation 4.1 (which holds within the very large thickness regime) becomes

Table 4.2. R1 for the structure factors with noise added using equation 4.18.

Thickness 10% error 20%error 40%error
— 24 mrad —

400 9.734 20.122 41.498
800 9.800 21.315 39.140

— 75 mrad —
400 10.492 20.103 40.601
800 10.077 19.266 40.528
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Figure 4.13. Multislice datasets corrected with C2beam using structure factors
with 40% noise added. The abscissa within each plot represents the true kine-
matical structure factor. R-factors for these plots are given in table 4.3.

Table 4.3. R1 for C2beam-corrected intensities using noisy structure factors.
Table values in percent.

Thickness 10% error 20%error 40%error
— 24 mrad —

400 9.370 9.398 9.501
800 6.991 6.977 7.019

— 75 mrad —
400 15.337 15.480 15.622
800 12.716 12.694 12.807

(4.19) Ig ∝ FgIg.

Most intensities, except for the weakest ones, are in the regime of large Ag where the Bessel
integral has converged, resulting in a more consistent behavior. Also, surprisingly, the R-factors
for φ = 75 mrad are worse than for φ = 24 mrad. This is counter to the trends seen so far, which
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almost universally show that large precession cone angle is favorable. The exact mechanism
behind this is not clear and requires further analysis in a future study.

4.3. Discussion: Approach for Solving Novel Structures

For precession to become a reliable and widespread technique for generating good starting
structure models from electron diffraction data, it must be fast and consistent. Chapter 3
showed that it is natively psuedo-kinematical for small-to-moderate thickness regimes, with
primary errors in the range of g < 0.25 Å−1. PED offers a new working range of up to
40-50 nm crystal dimension, representing a very favorable regime for dealing with real-world
bulk structures. The next step, covered in detail within this chapter, has been to extend the
capabilities to even greater thickness by means of correction factors.

It has been shown here that if structure factors are known, the correction generated by a
two-beam dynamical model is quite successful up to extraordinary thickness (beyond 160 nm).
This result proves that PED adheres very closely to two-beam dynamical scattering, especially
at large thickness and large precession angle. It also shows that the data are affected by n-beam
effects, as seen in the structure factor plots where there remain some residual nonlinearities that
depend upon thickness. The effects, however, vary systematically with increasing experimental
thickness and angle, and are slowly varying with changing experimental conditions.

The two-beam dynamical model, while fairly accurate, is unfortunately not immediately
practical for generating an a priori correction factor for general use. This is because successful
correction for large thickness requires a forward calculation: the structure factors must be
known before the crystal structrure can be solved. Nevertheless, the analyses do give some
new tools for enhancing ab initio structure solution using PED and open the way toward less
complex iterative structure solution methods than multislice, which requires both structure
factors and phases.

The structure solution in chapter 3 on GITO already made use of a crude form of the
correction factors that were investigated in this chapter. In section 3.1 a simple modification was
made to the experimental precession data from GITO (figure 3.4(a)) that appeared to linearize
the measured amplitudes to a kinematical approximation. This simple approach involved using
the square of the amplitudes — the intensities — instead of the amplitudes to solve with direct
methods. The structure maps that were generated from this procedure had identical atom
positions to the solution found using high-pass filtered amplitudes, however it more clearly
displayed some of the atom positions (e.g., clearer peaks) that were very close to the noise
floor in the amplitude solution. This is an interesting behavior for which an explanation is not
manifestly obvious.

The underlying principle can be found by examining the limits of the Blackman formula
1.24. By rearranging the Blackman equation, the measured intensity Idyn

g from a crystal of
greater than moderate thickness (t > 25 nm) becomes
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(4.20) Idyn
g ∝ F kin

g

∫ Ag

0
J0(2x)dx.

In the limit of large Ag, the integral converges to a constant of 0.5. Therefore, when the
thickness is very large or if g is a strong reflection,

(4.21) Idyn
g ∝ F kin

g .

In effect, even though not all reflections necessarily obeyed equation 4.20, the important
reflections (the strong ones) did and became more linearized toward pseudo-kinematical values.
The fact that weaker reflections might not obey equation 4.20 offers a mechanism as to why
the background in figure 3.6 contains noisy oscillations.

In a priori investigations of novel structures, a clear path for how to treat the data has now
been elucidated. There is overwhelming evidence that large cone semi-angle φ is beneficial to the
quality of the data. Additionally, thin specimens are advantageous because they decrease error,
and the thinnest ones (< 15 nm) are easy to treat via a kinematical correction for geometry.
The geometry corrections Ckin and Cgj , counterintuitively, are not favorable. The low spatial
frequency reflections contained in the range g < 0.25 Å−1, which are usually weak, exhibit
the largest dynamical error because they are near the transmitted beam and are almost always
undergoing simultaneous excitation with other beams during the precession experiment. Unless
important reflections lie within that range for the structure under investigation, they should be
high-pass filtered regardless of whether correction factors are used.

The requirement for forward calculation is an unfavorable one because precession is still not
able to solve novel structures from data that is taken from very thick specimens. The effects are
slowly varying with thickness if a large hollow-cone angle is used, and complementary methods
can indicate the approximate thickness regime. Therefore, the conditions giving rise to large
dynamical errors in the data can usually be avoided. The major breakthrough from this chapter
is that there is strong evidence showing that the structural electron crystallography problem
has been reduced from a many-beam problem to a largely two-beam one. This is a major
simplification and future methods, keeping in mind that |Fg| is all that is required for the
forward calculation, will need to take advantage of this new understanding.

The methods presented in chapter 3 should give favorable starting structure solutions for
structures that project well, e.g., they exhibit the property that scattered intensities fall within
an already pseudo-kinematical approximation (section ??). The use of intensities rather than
amplitudes is advantageous in the moderate-to-large thickness range (t = 25-75 nm) if used
with large cone angle. This method must, however, be used with caution since dynamical
behaviors in uncorrected intensities may be substantial at the top of the thickness range for
some materials. A classic example is where two neighboring reflections are both strong: a clear
path for strong dynamical exchange exists in such a case. Reflections near the transmitted
beam predictably contain the largest dynamical errors, and in a priori structure studies it is
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recommended that those reflections be removed using high-pass filtering except in cases where
such beams are structurally important, such as for large superstructures. A flowchart describing
a suggested solution procedure is given in figure 4.14.

Figure 4.14. Flowchart for generating a starting structure model from a PED
data set.




