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ABSTRACT

System Design and Verification of the Precession Electron Diffraction Technique

Christopher Su-Yan Own

Bulk structural crystallography is generally a two-part process wherein a rough starting struc-
ture model is first derived, then later refined to give an accurate model of the structure. The
critical step is the determination of the initial model. As materials problems decrease in length
scale, the electron microscope has proven to be a versatile and effective tool for studying many
problems. However, study of complex bulk structures by electron diffraction has been hindered
by the problem of dynamical diffraction. This phenomenon makes bulk electron diffraction very
sensitive to specimen thickness, and expensive equipment such as aberration-corrected scanning
transmission microscopes or elaborate methodology such as high resolution imaging combined
with diffraction and simulation are often required to generate good starting structures.

The precession electron diffraction technique (PED), which has the ability to significantly
reduce dynamical effects in diffraction patterns, has shown promise as being a “philosopher’s
stone” for bulk electron diffraction. However, a comprehensive understanding of its abilities
and limitations is necessary before it can be put into widespread use as a standalone technique.
This thesis aims to bridge the gaps in understanding and utilizing precession so that practical
application might be realized.

Two new PED systems have been built, and optimal operating parameters have been eluci-
dated. The role of lens aberrations is described in detail, and an alignment procedure is given
that shows how to circumvent aberration in order to obtain high-quality patterns. Multislice
simulation is used for investigating the errors inherent in precession, and is also used as a ref-
erence for comparison to simple models and to experimental PED data. General trends over
a large sampling of parameter space are determined. In particular, we show that the primary
reflection intensity errors occur near the transmitted beam and decay with increasing angle
and decreasing specimen thickness. These errors, occurring at the lowest spatial frequencies,
fortuitously coincide with reflections for which phases are easiest to determine via imaging
methods. A general two-beam dynamical model based upon an existing approximate model is
found to be fairly accurate across most experimental conditions, particularly where it is needed
for providing a correction to distorted data. Finally, the practical structure solution procedure
using PED is demonstrated for several model material systems.
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Of the experiment parameters investigated, the cone semi-angle is found to be the most
important (it should be as large as possible), followed closely by specimen thickness (thinner
is better). Assuming good structure projection characteristics in the specimen, the thickness
tractable by PED is extended to 40-50 nm without correction, demonstrated for complex oxides.
With a forward calculation based upon the two-beam dynamical model (using known structure
factors), usable specimen thickness can be extended past 150 nm. For a priori correction, using
the squared amplitudes approximates the two-beam model for most thicknesses if the scattering
from the structure adheres to psuedo-kinematical behavior. Practically, crystals up to 60 nm
in thickness can now be processed by the precession methods developed in this thesis.

–

Approved by

————————————————-
Professor Laurence D. Marks
Department of Materials Science and Engineering
Northwestern University, Evanston, IL 60208, USA

iv



To my wife Lindsey, for enriching my life throughout my years at
Northwestern and for many more to come.

You have our gratitude.

v



Acknowledgements

First and foremost, I would like to thank my thesis adviser, Prof. L.D. Marks for the
opportunity to work with him and for his guidance throughout my training. I am also indebted
to Dr. Wharton Sinkler for his mentorship and for his willingness to work with me and share
his resources throughout the duration of this work. He has acted quite like a second adviser
and I thank him for his many suggestions, excellent feedback, and for his understanding.

Many other people have made this work possible. Thanks go to the members of the Marks
research group, especially Arun Subramanian, who has always made himself available as a
friend and teacher; my father, Dr. Shi-Hau Own for his continual encouragement; and Vasant
Ramasubramanian, who taught me some fundamental electronics that I have found useful in
many areas of my life. Winfried Hill of Rochester Polytechnic deserves special thanks for
analysis of the electronics and circuit redesign suggestions for the first precession instrument
I built. Wharton Sinkler from UOP LLC provided the GITO and MOR specimens and did
considerable preliminary work with MOR that supported the results in section 5.4. Jim Ciston,
from our group, contributed the background work on Andalusite in section 5.3. I also thank
JEOL and Hitachi technical support, especially Ken Eberly and Jim Poulous at Hitachi, for
constructive discussions, and Hitachi High Technologies for permission to publish microscope
schematics included in this dissertation.

Funding for this project was provided by UOP LLC, STCS, the US Department of Energy
(Grant no. DE-FG02-03ER 15457), and the Fannie and John Hertz Foundation. I am deeply
indebted to the Fannie and John Hertz Foundation for funding my graduate studies; without the
Foundation’s singular vision and immense generosity, this work would not have been possible.

vi



Contents

ABSTRACT iii

Acknowledgements vi

List of Tables ix

List of Figures x

Chapter 1. Introduction and Methods 1
1.1. The Electron Microscope in Crystallography 2
1.2. Direct Methods 4
1.3. The Problem of Multiple Scattering 12
1.4. Approaches for Pseudo-Kinematical Electron Diffraction 17

Chapter 2. Precession Instrumentation 28
2.1. Precession Geometry 29
2.2. Retrofit Requirements 35
2.3. Aberration Analysis 37
2.4. Review of Previous Instruments 43
2.5. Design Approach 44

Chapter 3. The GITO Model System 54
3.1. Rapid a priori Solution of a Metal Oxide 55
3.2. Precession Simulation 65
3.3. R-factor analysis 72
3.4. Summary 74

Chapter 4. Lorentz Correction Factors 77
4.1. Derivation of Correction Factors 78
4.2. Comparison between models 86
4.3. Discussion: Approach for Solving Novel Structures 100

Chapter 5. Precession Examples 103
5.1. (Ga,In)2SnO4 103
5.2. La4Cu3MoO12 106
5.3. Al2SiO5 111

vii



5.4. Mordenite 113
5.5. Conclusion 117

Chapter 6. Conclusions and Future Work 119
6.1. Future Work 121

Appendix A. Electronics Background 123
A.1. Limited-bandwidth systems 123
A.2. Amplifier design 126
A.3. Simple Linear Power Supply Design 129

Appendix B. Implementation 1 132
B.1. Hitachi H-9000 retrofit 132
B.2. Performance and limitations 135

Appendix C. Implementation 2 139
C.1. JEOL 2000FX Retrofit 139
C.2. Performance and limitations 142

Appendix D. Implementation 3 145
D.1. JEOL 2100F 145

Appendix E. Alignment Procedure 149

Appendix F. Intensity Measurement 153

Appendix G. (Ga,In)2SnO4 Dataset 157

Appendix. References 161

viii



List of Tables

3.1 GITO atom positions from HREM, neutron diffraction (refined), and unrefined
positions from precession. Atom positions from PED match very closely with the
neutron-refined positions. 64

3.2 Terminology for thickness ranges. 67

4.1 Correction factors for correcting PED intensities. Note CBlackman has corrected
integrand. The pre-factor 1

ξ2
g

in corrections 1-2 can be approximated by F 2
g in the

case of swift electrons. 87

4.2 R1 for the structure factors with noise added using equation 4.18. 98

4.3 R1 for C2beam-corrected intensities using noisy structure factors. Table values in
percent. 99

G.1 Kinematical amplitudes and experimental amplitudes for the GITO precession
experiment (normalized to strongest reflection). See figure 3.2 for experimental
errors. Reflections excluded in direct methods are starred (*). 157

ix



List of Figures

1.1 Demonstration of amplitude and phase errors in perbromo-phthalocyanine. The
bottom row shows amplitude errors (a modified R1 - see eqn 1.17) and the top
shows phase errors (standard deviations, columns give comparable R-factor), both
increasing to the right. Amplitude errors were generated using noise in steps of 8%
of the strongest beam amplitude. Reproduced from Marks and Sinkler (2003). 5

1.2 Argand diagram illustrating Sayre’s triplet relationship (equation 1.9). For strong
amplitudes |Fg|, |Fh′ |, and |Fg−h′ |, the phase sum is approximately 2nπ. 8

1.3 Graphical representation of iterative projection onto sets described by equation
1.10. S1 is the set of structure factors constrained by the observed experimental
intensities |U exp

g |eiφg and S2 is the set of structure factors that satisfies the a priori
constraints. The magnitude of Pn represents the calculated figure of merit (FOM);
rapid convergence toward a feasible solution accompanies minimization of the FOM. 9

1.4 Three possible outcomes of the solution search between sets S1 and S2 using iterative
projection. Case a), where a single unique solution is clearly defined, is rare. Case
b) demonstrates considerable overlap of sets, a consequence of loose constraints
where many solutions satisfy both constraint sets. c) shows a case where there is
no overlap between sets. The algorithm will seek the solutions that minimize the
distance between the sets. 10

1.5 Flowchart of the feasible sets ’98 (fs98) direct methods algorithm. 11

1.6 Diffracted beams that meet the Bragg condition (equation 1.14) are necessarily in
the same condition to be rediffracted back into the incident beam. Demonstrated
here for two beams, this is the origin of dynamical diffraction. 13

1.7 Probability histogram of the product FgF−g for (a) centrosymmetric and (b)
noncentrosymmetric (random) models of C32Cl16CuN8 crystal. (c) and (d) are
similar centrosymmetric and noncentrosymmetric histograms for the triple product
FgFhF−g−h for the same crystal. All structure factors calculated by multislice, t =
5.264 nm. Taken from Hu et al. (2000) and Chukhovskii et al. (2001). 17

1.8 Normalized dynamical moduli of Fg plotted against F−g for the noncentrosymmetric
structure in figure 1.7(b) and (d). Friedel’s law is obeyed statistically for this
thickness (5.264nm). 18

x



1.9 Plot of the J0(2A) and its integral. Values for the first local maximum and minimum
are indicated. 20

1.10 The schematic diagram of precession electron diffraction (PED). The beam is tilted
off zone by angle φ using the beam tilt coils and serially precessed through an angle
θ = 2π. A complementary de-tilt is provided below the specimen by de-scan coils to
restore the zone axis pattern. 22

1.11 (a) Selected area DP of the [532] zone axis of magnesium orthovanadate (Mg3V2O8).
(b) Precessed SADP of the same orthovanadate using a moderate precession
angle of 5.2 mrad to illustrate the effects. Several HOLZ annuli are apparent
and non-systematic effects in the ZOLZ are averaged into a radially diminishing
background. Note: Images (a) and (b) have identical exposure times, digitizing
conditions, and have received the same digital image processing, so they can be
directly compared. 23

2.1 Reciprocal space geometry in (a) x − y plane and (b) x − z plane. The beam
precesses about the z-axis maintaining constant φ. In (b), the ZOLZ (bold dashed
circle) precesses about the z-axis. 31

2.2 Center precession pattern (a) is an integration of the simulated tilt series (contrast
inverted) that surrounds it forming an effective cone of illumination. (b) is the
non-precessed pattern. t = 41nm, φ = 24mrad, patterns represent structure factor
amplitudes. 33

2.3 a) Precession geometry schematic showing the relationship between ZOLZ and
FOLZ excitations. The distance z corresponds to the zero order zone radius; γ
corresponds to the usable diffraction radius in mrad. b) Plot of unit cell dimension
against usable diffraction radius γ for various cone semi-angles. The lines describe
γ, which decreases with φ and specimen unit cell thickness. 34

2.4 Precession geometry in a modern condenser-objective TEM with double deflection
coil system showing the path of the precessed transmitted beam. The objective
prefield acts as an additional condenser lens. Circle I is generated by the beam tilt
scan. De-scan collapses circle I down to point II. 38

2.5 Star of merced, formed by the unoptimized precession probe prior to full alignment.
The three-fold astigmatism term is dominant. Each lobe is roughly 25 nm. The
image was taken on a JEOL 2000FX retrofitted for precession. 39

2.6 The aberration function χ(ρ) describes the deviation from the ideal round lens along
the projected direction of the aberrated ray. The aberrated ray deviates in angle
from ideal by ρ; in real space this corresponds to a deviation of probe location (the
origin of probe ‘wandering’). 41

xi



2.7 a) Two-fold (potato chip) and b) three-fold (monkey’s saddle) aberration functions
(arbitrary units). These are the primary aberrations that require compensation in
conventional instruments. 41

2.8 An aberration function containing coefficients C10, C12a, C30, and C45a (mixed
in a respective ratio of 1:2:3:3). The effective aberration surface has rough 5-fold
symmetry. In the x-z section on the right, an odd-order function describes a region
of flat phase extended in the +x direction indicated by the arrows. 43

2.9 Overview diagram of the precession system. 45

2.10 Generic amplifier for driving an electromagnetic coil. 46

2.11 a) Simulated waveform for the H-9000 bipolar push-pull DS amplifier demonstrating
crossover distortion. At each zero-crossing point, there is a plateau in the waveform.
b) A precessed beam tilt pattern demonstrates how this distortion manifests in the
pattern: since x and y coils are out of phase by 90◦ a pinwheel pattern is generated. 47

2.12 Mixer-buffer circuit used to add precession capabilities to a deflector amplifier. The
first stage sums the normal microscope signal with the precession scan signal and is
followed by an inverting buffer stage that corrects phase and isolates the mixer from
downstream components. This circuit can be installed at point a in figure 2.10. 48

2.13 Precession software interface. 51

2.14 Precession patterns for 60 mrad cone semiangle (a) and 40 mrad cone semiangle (b).
Spiral distortions in the projector lens alter the shape of the spots and shifts their
position, preventing straightforward intensity measurement. Using a smaller cone
semi-angle gives an improved and easier to measure spot pattern. 52

3.1 Structure of (Ga,In)2SnO4 (GITO). In/Ga balls represent mixed occupancy sites. 54

3.2 Friedel errors (amplitudes). Most precession errors (circles) are less than 10% of
the amplitude and decrease with increasing amplitude. Non-precessed Friedel errors
have more scatter and often exceed 10% of the measured amplitude due to the
asymmetric sampling of relrods. 56

3.3 (a) Kinematical amplitudes pattern (radius proportional to amplitude) and (b)
experimental PED intensity pattern (radius proportional to intensity). The annulus
describing the range 0.25-0.75 Å−1 is bounded by the circles. 58
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and 206 reflections, respectively. 85

4.5 The squared sinc function (a) and the integral of the sinc function (b) plotted
against excitation error for a crystal thickness of 500 Å. The integral converges
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600Å, for φ = 24 mrad. The correction factors behave nearly identically (with
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